8-bit Microcontrollers

New 8FX MB95560H/570H/580H Series

MB95F562H/F562K/F563H/F563K/F564H/F564K
 MB95F572H/F572K/F573H/F573K/F574H/F574K MB95F582H/F582K/F583H/F583K/F584H/F584K

■ DESCRIPTION

The MB95560H/570H/580H Series is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of this series contain a variety of peripheral resources.

- FEATURES

- F²MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instructions
- Bit manipulation instructions, etc.

Note: $\mathrm{F}^{2} \mathrm{MC}$ is the abbreviation of FUJITSU Flexible Microcontroller.

- Clock (The main oscillation clock and the suboscillation clock are only available on MB95F562H/F562K/ F563H/F563K/F564H/F564K/F582H/F582K/F583H/F583K/F584H/F584K.)
- Selectable main clock source
- Main oscillation clock (up to 16.25 MHz , maximum machine clock frequency: 8.125 MHz)
- External clock (up to 32.5 MHz , maximum machine clock frequency: 16.25 MHz)
- Main CR clock ($4 \mathrm{MHz} \pm 2 \%$)
- The main CR clock frequency becomes 8 MHz when the PLL multiplication rate is 2.
- The main CR clock frequency becomes 10 MHz when the PLL multiplication rate is 2.5 .
- The main CR clock frequency becomes 12 MHz when the PLL multiplication rate is 3 .
- The main CR clock frequency becomes 16 MHz when the PLL multiplication rate is 4 .
- Selectable subclock source
- Suboscillation clock (32.768 kHz)
- External clock (32.768 kHz)
- Sub-CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 150 kHz)
- Timer
- 8/16-bit composite timer $\times 2$ channels (only one channel on MB95F572H/F572K/F573H/F573K/F574H/ F574K/F582H/F582K/F583H/F583K/F584H/F584K)
- Time-base timer $\times 1$ channel
- Watch prescaler $\times 1$ channel
(Continued)

> FUJITSU SEMICONDUCTOR provides information facilitating product development via the following website. The website contains information useful for customers. $$
\text { http://edevice.fujitsu.com/micom/en-support/ }
$$

MB95560H/570H/580H Series

(Continued)

- LIN-UART (only available on MB95F562H/F562K/F563H/F563K/F564H/F564K/F582H/F582K/F583H/ F583K/F584H/F584K)
- Full duplex double buffer
- Capable of clock synchronous serial data transfer and clock asynchronous serial data transfer
- External interrupt
- Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
- Can be used to wake up the device from different low power consumption (standby) modes
- 8/10-bit A/D converter

8-bit or 10-bit resolution can be selected.

- Low power consumption (standby) modes

There are four standby modes as follows:

- Stop mode
- Sleep mode
- Watch mode
- Time-base timer mode

In standby mode, the device can be made to enter either normal standby mode or deep standby mode.

- I/O port
- MB95F562H/F563H/F564H (maximum no. of I/O ports: 16)
- General-purpose I/O ports (CMOS I/O) : 15
- General-purpose I/O ports (N-ch open drain) : 1
- MB95F562K/F563K/F564K (maximum no. of I/O ports: 17)
- General-purpose I/O ports (CMOS I/O) : 15
- General-purpose I/O ports (N-ch open drain) : 2
- MB95F572H/F573H/F574H (maximum no. of I/O ports: 4)
- General-purpose I/O ports (CMOS I/O) : 3
- General-purpose I/O ports (N-ch open drain) : 1
- MB95F572K/F573K/F574K (maximum no. of I/O ports: 5)
- General-purpose I/O ports (CMOS I/O) : 3
- General-purpose I/O ports (N-ch open drain) : 2
- MB95F582H/F583H/F584H (maximum no. of I/O ports: 12)
- General-purpose I/O ports (CMOS I/O) :11
- General-purpose I/O ports (N-ch open drain) : 1
- MB95F582K/F583K/F584K (maximum no. of I/O ports: 13)
- General-purpose I/O ports (CMOS I/O) :11
- General-purpose I/O ports (N-ch open drain) : 2
- On-chip debug
- 1-wire serial control
- Serial writing supported (asynchronous mode)
- Hardware/software watchdog timer
- Built-in hardware watchdog timer
- Built-in software watchdog timer
- Power-on reset

A power-on reset is generated when the power is switched on.

- Low-voltage detection reset circuit (only available on MB95F562K/F563K/F564K/F572K/F573K/F574K/ F582K/F583K/F584K)
Built-in low-voltage detector
- Clock supervisor counter

Built-in clock supervisor counter function

- Dual operation Flash memory

The program/erase operation and the read operation can be executed in different banks (upper bank/lower bank) simultaneously.

- Flash memory security function

Protects the content of the Flash memory.

MB95560H/570H/580H Series

■ PRODUCT LINE-UP

- MB95560H Series

Part number	MB95F562H	MB95F563H	MB95F564H	MB95F562K	MB95F563K	MB95F564K
Type	Flash memory product					
Clock supervisor counter	It supervises the main clock oscillation.					
Flash memory capacity	8 Kbyte	12 Kbyte	20 Kbyte	8 Kbyte	12 Kbyte	20 Kbyte
RAM capacity	240 bytes	496 bytes	496 bytes	240 bytes	496 bytes	496 bytes
Power-on reset	Yes					
Low-voltage detection reset	No			Yes		
Reset input	Dedicated			Selected through software		
CPU functions	- Number of basic instructions $: 136$ - Instruction bit length $: 8$ bits - Instruction length $: 1$ to 3 bytes - Data bit length $: 1,8$ and 16 bits - Minimum instruction execution time $: 61.5$ ss (machine clock frequency $=16.25 \mathrm{MHz}$) - Interrupt processing time $: 0.6 \mu \mathrm{~s}$ (machine clock frequency $=16.25 \mathrm{MHz}$)					
Generalpurpose I/O	- I/O ports (Max) : 16 - I/O ports (Max) $: 17$ - CMOS I/O $: 15$ -CMOS I/O $: 15$ - N-ch open drain: 1 - N-ch open drain: 2					
Time-base timer	Interval time: 0.256 ms to 8.3 s (external clock frequency $=4 \mathrm{MHz}$)					
Hardware/ software watchdog timer	- Reset generation cycle Main oscillation clock at 10 MHz : 105 ms (Min) - The sub-CR clock can be used as the source clock of the hardware watchdog timer.					
Wild register	It can be used to replace 3 bytes of data.					
LIN-UART	- A wide range of communication speed can be selected by a dedicated reload timer. - It has a full duplex double buffer. - Both clock synchronous serial data transfer and clock asynchronous serial data transfer are enabled. - The LIN function can be used as a LIN master or a LIN slave.					
	6 channels					
converter	8 -bit or 10-bit resolution can be selected.					
	2 channels					
8/16-bit composite timer	- The timer can be configured as an " 8 -bit timer $\times 2$ channels" or a " 16 -bit timer $\times 1$ channel", - It has the following functions: interval timer function, PWC function, PWM function and input capture function. - Count clock: it can be selected from internal clocks (7 types) and external clocks. - It can output square wave.					
	6 channels					
Exterrupt	- Interrupt by edge detection (The rising edge, falling edge, or both edges can be selected.) - It can be used to wake up the device from the standby mode.					
On-chip debug	- 1-wire serial control - It supports serial writing (asynchronous mode).					

(Continued)

MB95560H/570H/580H Series

(Continued)

Part number	MB95F562H	MB95F563H	MB95F564H		MB95F562K		MB95F563K		MB95F564K
Watch prescaler Eight different time intervals can be selected.									
Flash memory	- It supports automatic programming (Embedded Algorithm), and program/erase/erase suspend/erase-resume commands. - It has a flag indicating the completion of the operation of Embedded Algorithm. - Flash security feature for protecting the content of the Flash memory								
	Number of program/erase cycles				00	1000		100000	
	Data retention time				years	10 ye		5 years	
Standby mode	Sleep mode, stop mode, watch mode, time-base timer mode								
Package	LCC-32P-M19 FPT-20P-M09 FPT-20P-M10								

MB95560H/570H/580H Series

- MB95570H Series

Parameter number	MB95F572H	MB95F573H	MB9		MB9	72K		MB95F574K
Type	Flash memory product							
Clock supervisor counter	It supervises the main clock oscillation.							
Flash memory capacity	8 Kbyte	12 Kbyte	20 Kbyte		8 Kbyte		12 Kbyte	20 Kbyte
RAM capacity	240 bytes	496 bytes			240 bytes		496 bytes	496 bytes
Power-on reset	Yes							
Low-voltage detection reset	No				Yes			
Reset input	Dedicated				Selected through software			
CPU functions	- Number of basic instructions $: 136$ - Instruction bit length $: 8$ bits - Instruction length $: 1$ to 3 bytes - Data bit length $: 1,8$ and 16 bits - Minimum instruction execution time $: 61.5 \mathrm{~ns}$ (machine clock frequency $=16.25 \mathrm{MHz}$) - Interrupt processing time $: 0.6 \mu \mathrm{~s}$ (machine clock frequency $=16.25 \mathrm{MHz}$)							
Generalpurpose I/O	- I/O ports (Max) : 4 - CMOS I/O : 3 - N-ch open drain: 1				- I/O ports (Max) : 5 - CMOS I/O : 3 - N-ch open drain: 2			
Time-base timer	Interval time: 0.256 ms to 8.3 s (external clock frequency $=4 \mathrm{MHz}$)							
Hardware/ software watchdog timer	- Reset generation cycle Main oscillation clock at 10 MHz : 105 ms (Min) - The sub-CR clock can be used as the source clock of the hardware watchdog timer.							
Wild register	It can be used to replace 3 bytes of data.							
LIN-UART	No LIN-UART							
8/10-bit A/D converter	2 channels							
	8-bit or 10-bit resolution can be selected.							
	1 channel							
8/16-bit composite timer	- The timer can be configured as an " 8 -bit timer $\times 2$ channels" or a " 16 -bit timer $\times 1$ channel". - It has the following functions: interval timer function, PWC function, PWM function and input capture function. - Count clock: it can be selected from internal clocks (7 types) and external clocks. - It can output square wave.							
	2 channels							
interrupt	- Interrupt by edge detection (The rising edge, falling edge, or both edges can be selected. - It can be used to wake up the device from the standby mode.							
On-chip debug	- 1-wire serial control - It supports serial writing (asynchronous mode).							
Watch prescaler	Eight different time intervals can be selected.							
Flash memory	- It supports automatic programming (Embedded Algorithm), and program/erase/erase suspend/erase-resume commands. - It has a flag indicating the completion of the operation of Embedded Algorithm. - Flash security feature for protecting the content of the Flash memory							
	Number of program/erase cycles			1000		10000		100000
	Data retention time			20 years		10 years		5 years
Standby mode	Sleep mode, stop mode, watch mode, time-base timer mode							
Package	$\begin{aligned} & \text { DIP-8P-M03 } \\ & \text { FPT-8P-M08 } \end{aligned}$							

MB95560H/570H/580H Series

- MB95580H Series

Parameter number	MB95F582H	MB95F583H	MB95F584H	MB95F582K	MB95F583K	MB95F584K
Type	Flash memory product					
Clock supervisor counter	It supervises the main clock oscillation.					
Flash memory capacity	8 Kbyte	12 Kbyte	20 Kbyte	8 Kbyte	12 Kbyte	20 Kbyte
RAM capacity	240 bytes	496 bytes	496 bytes	240 bytes	496 bytes	496 bytes
Power-on reset	Yes					
Low-voltage detection reset	No			Yes		
Reset input	Dedicated			Selected through software		
CPU functions	- Number of basic instructions $: 136$ - Instruction bit length $: 8$ bits - Instruction length $: 1$ to 3 bytes - Data bit length $: 1,8$ and 16 bits - Minimum instruction execution time $: 61.5 \mathrm{~ns}$ (machine clock frequency $=16.25 \mathrm{MHz}$) - Interrupt processing time $: 0.6 \mu \mathrm{~s}$ (machine clock frequency $=16.25 \mathrm{MHz}$)					
Generalpurpose I/O	- I/O ports (Max) : 12 - CMOS I/O : 11 - N-ch open drain: 1			- I/O ports (Max) : 13- CMOS I/O $: 11$- N-ch open drain: 2		
Time-base timer	Interval time: 0.256 ms to 8.3 s (external clock frequency $=4 \mathrm{MHz}$)					
Hardware/ software watchdog timer	- Reset generation cycle Main oscillation clock at 10 MHz : 105 ms (Min) - The sub-CR clock can be used as the source clock of the hardware watchdog timer.					
Wild register	It can be used to replace 3 bytes of data.					
LIN-UART	- A wide range of communication speed can be selected by a dedicated reload timer. - It has a full duplex double buffer. - Both clock synchronous serial data transfer and clock asynchronous serial data transfer are enabled. - The LIN function can be used as a LIN master or a LIN slave.					
8/10-bit A/D converter	5 channels					
	8-bit or 10-bit resolution can be selected.					
	1 channel					
8/16-bit composite timer	- The timer can be configured as an " 8 -bit timer $\times 2$ channels" or a "16-bit timer $\times 1$ channel". - It has the following functions: interval timer function, PWC function, PWM function and input capture function. - Count clock: it can be selected from internal clocks (7 types) and external clocks. - It can output square wave.					
	6 channels					
External interrupt	- Interrupt by edge detection (The rising edge, falling edge, or both edges can be selected.) - It can be used to wake up the device from the standby mode.					
On-chip debug	- 1-wire serial control - It supports serial writing (asynchronous mode).					

(Continued)

MB95560H/570H/580H Series

(Continued)

Part number	MB95F582H	MB95F583H	MB95F584H		MB95F582K		MB95F583K		MB95F584K
Watch prescaler Eight different time intervals can be selected.									
Flash memory	- It supports automatic programming (Embedded Algorithm), and program/erase/erase-suspend/erase-resume commands. - It has a flag indicating the completion of the operation of Embedded Algorithm. - Flash security feature for protecting the content of the Flash memory								
	Number of program/erase cycles			1000		10000		100000	
	Data reten	on time		20 years		10 years		5 years	
Standby mode	Sleep mode, stop mode, watch mode, time-base timer mode								
Package	$\begin{aligned} & \text { LCC-32P-M19 } \\ & \text { FPT-16P-M08 } \end{aligned}$FPT-16P-M23								

MB95560H/570H/580H Series

■ PACKAGES AND CORRESPONDING PRODUCTS

- MB95560H Series

Part number	MB95F562H	MB95F562K	MB95F563H	MB95F563K	MB95F564H	MB95F564K
Package					O	O
LCC-32P-M19	O	O	O	O	O	O
FPT-20P-M09	O	O	O	O	O	O
FPT-20P-M10	O	O	O	O	O	X
FPT-16P-M08	X	X	X	X	X	X
FPT-16P-M23	X	X	X	X	X	X
DIP-8P-M03	X	X	X	X	X	X
FPT-8P-M08	X	X	X	X	X	X

- MB95570H Series

Package	MB95F572H	MB9mber	MB95572K	MB95F573H	MB95F573K	MB95F574H
MB95F574K						
LCC-32P-M19	X	X	X	X	X	X
FPT-2P-M09	X	X	X	X	X	X
FPT-20P-M10	X	X	X	X	X	X
FPT-16P-M08	X	X	X	X	X	X
FPT-16P-M23	X	X	X	X	X	X
DIP-8P-M03	O	O	O	O	O	O
FPT-8P-M08	O	O	O	O	O	O

- MB95580H Series

Part number	MB95F582H	MB95F582K	MB95F583H	MB95F583K	MB95F584H	MB95F584K
LCC-32P-M19	O	O	O	O	O	O
FPT-2OP-M09	X	X	X	X	X	X
FPT-20P-M10	X	X	X	X	X	X
FPT-16P-M08	O	O	O	O	O	O
FPT-16P-M23	O	O	O	O	O	O
DP-8P-M03	X	X	X	X	X	X
FPT-8P-M08	X	X	X	X	X	X

O: Available

X: Unavailable

MB95560H/570H/580H Series

DIFFERENCES AMONG PRODUCTS AND NOTES ON PRODUCT SELECTION

- Current consumption

When using the on-chip debug function, take account of the current consumption of Flash memory program/ erase.
For details of current consumption, see " \square ELECTRICAL CHARACTERISTICS".

- Package

For details of information on each package, see "回 PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSION".

- Operating voltage

The operating voltage varies, depending on whether the on-chip debug function is used or not. For details of the operating voltage, see "■ ELECTRICAL CHARACTERISTICS".

- On-chip debug function

The on-chip debug function requires that $\mathrm{Vcc}, \mathrm{Vss}$ and one serial wire be connected to an evaluation tool. For details of the connection method, refer to "CHAPTER 21 EXAMPLE OF SERIAL PROGRAMMING CONNECTION" in "New 8FX MB95560H/570H/580H Series Hardware Manual".

MB95560H/570H/580H Series

PIN ASSIGNMENT

(Continued)

MB95560H/570H/580H Series

(Continued)

MB95560H/570H/580H Series

PIN FUNCTIONS (MB95560H Series, 32 pins)

Pin no.	Pin name	I/O circuit type*	Function
1	PF1	B	General-purpose I/O port
	X1		Main clock I/O oscillation pin
2	PF0	B	General-purpose I/O port
	X0		Main clock input oscillation pin
3	Vss	-	Power supply pin (GND)
4	PG2	C	General-purpose I/O port
	X1A		Subclock I/O oscillation pin
5	PG1	C	General-purpose I/O port
	X0A		Subclock input oscillation pin
6	V cc	-	Power supply pin
7	C	-	Decoupling capacitor connection pin
8	PF2	A	General-purpose I/O port
	$\overline{\mathrm{RST}}$		Reset pin Dedicated reset pin on MB95F562H/F563H/F564H
9	P63	E	General-purpose I/O port High-current pin
	TO11		8/16-bit composite timer ch. 1 output pin
10	P62	E	General-purpose I/O port High-current pin
	TO10		8/16-bit composite timer ch. 1 output pin
11	NC	-	It is an internally connected pin. Always leave it unconnected.
12			
13			
14			
15	P00	D	General-purpose I/O port High-current pin
	AN00		A/D converter analog input pin
16	P64	E	General-purpose I/O port High-current pin
	EC1		8/16-bit composite timer ch. 1 clock input pin
17	P01	D	General-purpose I/O port High-current pin
	AN01		A/D converter analog input pin
18	P02	D	General-purpose I/O port High-current pin
	INT02		External interrupt input pin
	AN02		A/D converter analog input pin
	SCK		LIN-UART clock I/O pin

(Continued)

MB95560H/570H/580H Series

(Continued)

Pin no.	Pin name	$\begin{gathered} \text { I/O } \\ \begin{array}{c} \text { circuit } \\ \text { type } \end{array} \end{gathered}$	Function
19	P03	D	General-purpose I/O port High-current pin
	INT03		External interrupt input pin
	AN03		A/D converter analog input pin
	SOT		LIN-UART data output pin
20	P04	D	General-purpose I/O port
	INT04		External interrupt input pin
	AN04		A/D converter analog input pin
	SIN		LIN-UART data input pin
	EC0		8/16-bit composite timer ch. 0 clock input pin
21	P05	D	General-purpose I/O port High-current pin
	INT05		External interrupt input pin
	AN05		A/D converter analog input pin
	TO00		8/16-bit composite timer ch. 0 output pin
22	P06	E	General-purpose I/O port High-current pin
	INT06		External interrupt input pin
	TO01		8/16-bit composite timer ch. 0 output pin
23	P12	F	General-purpose I/O port
	EC0		8/16-bit composite timer ch. 0 clock input pin
	DBG		DBG input pin
24	P07	E	General-purpose I/O port High-current pin
	INT07		External interrupt input pin
25	NC	-	It is an internally connected pin. Always leave it unconnected.
26			
27			
28			
29			
30			
31			
32			

[^0]
MB95560H/570H/580H Series

PIN FUNCTIONS (MB95560H Series, 20 pins)

Pin no.	Pin name	I/O circuit type*	Function
1	PF0	B	General-purpose I/O port
	X0		Main clock input oscillation pin
2	PF1	B	General-purpose I/O port
	X1		Main clock I/O oscillation pin
3	Vss	-	Power supply pin (GND)
4	PG2	C	General-purpose I/O port
	X1A		Subclock I/O oscillation pin
5	PG1	C	General-purpose I/O port
	X0A		Subclock input oscillation pin
6	Vcc	-	Power supply pin
7	C	-	Decoupling capacitor connection pin
8	PF2	A	General-purpose I/O port
	$\overline{\text { RST }}$		Reset pin Dedicated reset pin on MB95F562H/F563H/F564H
9	P62	E	General-purpose I/O port High-current pin
	TO10		8/16-bit composite timer ch. 1 output pin
10	P63	E	General-purpose I/O port High-current pin
	TO11		8/16-bit composite timer ch. 1 output pin
11	P64	E	General-purpose I/O port High-current pin
	EC1		8/16-bit composite timer ch. 1 clock input pin
12	P00	D	General-purpose I/O port High-current pin
	AN00		A/D converter analog input pin
13	P01	D	General-purpose I/O port High-current pin
	AN01		A/D converter analog input pin
14	P02	D	General-purpose I/O port High-current pin
	INT02		External interrupt input pin
	AN02		A/D converter analog input pin
	SCK		LIN-UART clock I/O pin
15	P03	D	General-purpose I/O port High-current pin
	INT03		External interrupt input pin
	AN03		A/D converter analog input pin
	SOT		LIN-UART data output pin

(Continued)

MB95560H/570H/580H Series

(Continued)

Pin no.	Pin name	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \text { circuit } \\ \text { type } \end{gathered}$	Function
16	P04	D	General-purpose I/O port
	INT04		External interrupt input pin
	AN04		A/D converter analog input pin
	SIN		LIN-UART data input pin
	EC0		8/16-bit composite timer ch. 0 clock input pin
17	P05	D	General-purpose I/O port High-current pin
	INT05		External interrupt input pin
	AN05		A/D converter analog input pin
	TO00		8/16-bit composite timer ch. 0 output pin
18	P06	E	General-purpose I/O port High-current pin
	INT06		External interrupt input pin
	TO01		8/16-bit composite timer ch. 0 output pin
19	P07	E	General-purpose I/O port High-current pin
	INT07		External interrupt input pin
20	P12	F	General-purpose I/O port
	EC0		8/16-bit composite timer ch. 0 clock input pin
	DBG		DBG input pin

*: For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

MB95560H/570H/580H Series

PIN FUNCTIONS (MB95570H Series, 8 pins)

Pin no.	Pin name	I/O circuit type*	Function
1	Vss	-	Power supply pin (GND)
2	Vcc	-	Power supply pin
3	C	-	Decoupling capacitor connection pin
4	PF2	A	General-purpose I/O port
	$\overline{\mathrm{RST}}$		Reset pin Dedicated reset pin on MB95F572H/F573H/F574H
5	P04	D	General-purpose I/O port
	INT04		External interrupt input pin
	AN04		A/D converter analog input pin
	EC0		8/16-bit composite timer ch. 0 clock input pin
6	P05	D	General-purpose I/O port High-current pin
	AN05		A/D converter analog input pin
	TO00		8/16-bit composite timer ch. 0 output pin
7	P06	E	General-purpose I/O port High-current pin
	INT06		External interrupt input pin
	TO01		8/16-bit composite timer ch. 0 output pin
8	P12	F	General-purpose I/O port
	EC0		8/16-bit composite timer ch. 0 clock input pin
	DBG		DBG input pin

*: For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

MB95560H/570H/580H Series

PIN FUNCTIONS (MB95580H Series, 32 pins)

Pin no.	Pin name	I/O circuit type*	Function
1	PF1	B	General-purpose I/O port
	X1		Main clock I/O oscillation pin
2	PF0	B	General-purpose I/O port
	X0		Main clock input oscillation pin
3	Vss	-	Power supply pin (GND)
4	PG2	C	General-purpose I/O port
	X1A		Subclock I/O oscillation pin
5	PG1	C	General-purpose I/O port
	X0A		Subclock input oscillation pin
6	V cc	-	Power supply pin
7	C	-	Decoupling capacitor connection pin
8	PF2	A	General-purpose I/O port
	$\overline{\mathrm{RST}}$		Reset pin Dedicated reset pin on MB95F582H/F583H/F584H
9	NC	-	It is an internally connected pin. Always leave it unconnected.
10			
11			
12			
13			
14			
15			
16			
17	P01	D	General-purpose I/O port High-current pin
	AN01		A/D converter analog input pin
18	P02	D	General-purpose I/O port High-current pin
	INT02		External interrupt input pin
	AN02		A/D converter analog input pin
	SCK		LIN-UART clock I/O pin
19	P03	D	General-purpose I/O port High-current pin
	INT03		External interrupt input pin
	AN03		A/D converter analog input pin
	SOT		LIN-UART data output pin

(Continued)

MB95560H/570H/580H Series

(Continued)

Pin no.	Pin name	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \text { circuit } \\ \text { type } \end{gathered}$	Function
20	P04	D	General-purpose I/O port
	INT04		External interrupt input pin
	AN04		A/D converter analog input pin
	SIN		LIN-UART data input pin
	EC0		8/16-bit composite timer ch. 0 clock input pin
21	P05	D	General-purpose I/O port High-current pin
	INT05		External interrupt input pin
	AN05		A/D converter analog input pin
	TO00		8/16-bit composite timer ch. 0 output pin
22	P06	E	General-purpose I/O port High-current pin
	INT06		External interrupt input pin
	TO01		8/16-bit composite timer ch. 0 output pin
23	P12	F	General-purpose I/O port
	EC0		8/16-bit composite timer ch. 0 clock input pin
	DBG		DBG input pin
24	P07	E	General-purpose I/O port High-current pin
	INT07		External interrupt input pin
25	NC	-	It is an internally connected pin. Always leave it unconnected.
26			
27			
28			
29			
30			
31			
32			

*: For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

MB95560H/570H/580H Series

- PIN FUNCTIONS (MB95580H Series, 16 pins)

Pin no.	Pin name	I/O circuit type*	Function
1	PF0	B	General-purpose I/O port
	X0		Main clock input oscillation pin
2	PF1	B	General-purpose I/O port
	X1		Main clock I/O oscillation pin
3	Vss	-	Power supply pin (GND)
4	PG2	C	General-purpose I/O port
	X1A		Subclock I/O oscillation pin
5	PG1	C	General-purpose I/O port
	X0A		Subclock input oscillation pin
6	Vcc	-	Power supply pin
7	PF2	A	General-purpose I/O port
	$\overline{\mathrm{RST}}$		Reset pin Dedicated reset pin on MB95F582H/F583H/F584H
8	C	-	Decoupling capacitor connection pin
9	P02	D	General-purpose I/O port High-current pin
	INT02		External interrupt input pin
	AN02		A/D converter analog input pin
	SCK		LIN-UART clock I/O pin
10	P01	D	General-purpose I/O port High-current pin
	AN01		A/D converter analog input pin
11	P03	D	General-purpose I/O port High-current pin
	INT03		External interrupt input pin
	AN03		A/D converter analog input pin
	SOT		LIN-UART data output pin
12	P04	D	General-purpose I/O port
	INT04		External interrupt input pin
	AN04		A/D converter analog input pin
	SIN		LIN-UART data input pin
	EC0		8/16-bit composite timer ch. 0 clock input pin

(Continued)

MB95560H/570H/580H Series

(Continued)

Pin no.	Pin name	I/O circuit type*	Function
13	P05	D	General-purpose I/O port High-current pin
	INT05		External interrupt input pin
	AN05		A/D converter analog input pin
	TO00		8/16-bit composite timer ch. 0 output pin
14	P06	E	General-purpose I/O port High-current pin
	INT06		External interrupt input pin
	TO01		8/16-bit composite timer ch. 0 output pin
15	P07	E	General-purpose I/O port High-current pin
	INT07		External interrupt input pin
16	P12	F	General-purpose I/O port
	EC0		8/16-bit composite timer ch. 0 clock input pin
	DBG		DBG input pin

*: For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

MB95560H/570H/580H Series

■ I/O CIRCUIT TYPE

(Continued)

MB95560H/570H/580H Series

(Continued)

Type	Circuit	Remarks
D		- CMOS output - Hysteresis input - Pull-up control available - Analog input
E		- CMOS output - Hysteresis input - Pull-up control available
F		- N-ch open drain output - Hysteresis input

MB95560H/570H/580H Series

■ HANDLING PRECAUTIONS

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your FUJITSU SEMICONDUCTOR semiconductor devices.

1. Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

- Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

- Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

- Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.
(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.
(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.

Therefore, avoid this type of connection.
(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

- Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:
(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
(2) Be sure that abnormal current flows do not occur during the power-on sequence.

- Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

- Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

- Precautions Related to Usage of Devices

FUJITSU SEMICONDUCTOR semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

2. Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under FUJITSU SEMICONDUCTOR's recommended conditions. For detailed information about mount conditions, contact your sales representative.

- Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to FUJITSU SEMICONDUCTOR recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

MB95560H/570H/580H Series

- Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. FUJITSU SEMICONDUCTOR recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with FUJITSU SEMICONDUCTOR ranking of recommended conditions.

- Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with $\mathrm{Sn}-\mathrm{Ag}-\mathrm{Cu}$ balls are mounted using $\mathrm{Sn}-\mathrm{Pb}$ eutectic soldering, junction strength may be reduced under some conditions of use.

- Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:
(1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
(2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between $5^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$.
When you open Dry Package that recommends humidity 40\% to 70\% relative humidity.
(3) When necessary, FUJITSU SEMICONDUCTOR packages semiconductor devices in highly moistureresistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
(4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

- Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the FUJITSU SEMICONDUCTOR recommended conditions for baking.
Condition: $125^{\circ} \mathrm{C} / 24 \mathrm{~h}$

- Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:
(1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
(2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
(3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of $1 \mathrm{M} \Omega$).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
(4) Ground all fixtures and instruments, or protect with anti-static measures.
(5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

MB95560H/570H/580H Series

3. Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.
(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.
(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.
(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of FUJITSU SEMICONDUCTOR products in other special environmental conditions should consult with sales representatives.

Please check the latest handling precautions at the following URL.
http://edevice.fujitsu.com/fj/handling-e.pdf

MB95560H/570H/580H Series

- NOTES ON DEVICE HANDLING

- Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating.
In a CMOS IC, if a voltage higher than Vcc or a voltage lower than Vss is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "1. Absolute Maximum Ratings" of "■ ELECTRICAL CHARACTERISTICS" is applied to the V_{cc} pin or the $\mathrm{V}_{\text {ss }}$ pin, a latch-up may occur.
When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

- Stabilizing supply voltage

Supply voltage must be stabilized.
A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the Vcc power supply voltage.
As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in Vcc ripple (p-p value) at the commercial frequency $(50 \mathrm{~Hz} / 60 \mathrm{~Hz})$ does not exceed 10% of the standard Vcc value, and the transient fluctuation rate does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ at a momentary fluctuation such as switching the power supply.

- Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

- PIN CONNECTION

- Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least $2 \mathrm{k} \Omega$. Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

- Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the Vcc pin and the Vss pin to the power supply and ground outside the device. In addition, connect the current supply source to the Vcc pin and the Vss pin with low impedance.
It is also advisable to connect a ceramic capacitor of approximately $0.1 \mu \mathrm{~F}$ as a decoupling capacitor between the V_{cc} pin and the V ss pin at a location close to this device.

- DBG pin

Connect the DBG pin to an external pull-up resistor of $2 \mathrm{k} \Omega$ or above.
After power-on, ensure that the DBG pin does not stay at " L " level until the reset output is released.
The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor.

- $\overline{\text { RST }}$ pin

Connect the $\overline{\mathrm{RST}}$ pin to an external pull-up resistor of $2 \mathrm{k} \Omega$ or above.
To prevent the device from unintentionally entering the reset mode due to noise, minimize the interconnection length between a pull-up resistor and the $\overline{\text { RST }}$ pin and that between a pull-up resistor and the Vcc pin when designing the layout of the printed circuit board.
The PF2/RST pin functions as the reset input/output pin after power-on. In addition, the reset output of the PF2/RST pin can be enabled by the RSTOE bit in the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit in the SYSC register.

MB95560H/570H/580H Series

- C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the Vcc pin must have a capacitance equal to or larger than the capacitance of Cs. For the connection to a decoupling capacitor Cs , see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and Cs and the distance between Cs and the Vss pin when designing the layout of a printed circuit board.

- DBG/ $\overline{\mathrm{RST}} / \mathrm{C}$ pins connection diagram

MB95560H/570H/580H Series

BLOCK DIAGRAM (MB95560H Series)

MB95560H/570H/580H Series

BLOCK DIAGRAM (MB95570H Series)

*1: PF2 and P12 are N-ch open drain pins
*2: Software option
*3: P05 and P06 are high-current pins.

MB95560H/570H/580H Series

BLOCK DIAGRAM (MB95580H Series)

MB95560H/570H/580H Series

CPU CORE

- Memory space

The memory space of the MB95560H/570H/580H Series is 64 Kbyte in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95560H/570H/580H Series are shown below.

- Memory maps

MB95F562H/F562K/F572H/ F572K/F582H/F582K		MB95F563H/F563K/F573H/ F573K/F583H/F583K		MB95F564H/F564K/F574H/ F574K/F584H/F584K	
$\begin{aligned} & 0000_{\mathrm{H}} \\ & 0080_{\mathrm{H}} \\ & 0090_{\mathrm{H}} \\ & 0100_{\mathrm{H}} \\ & 0180_{\mathrm{H}} \end{aligned}$	I/O area	$\begin{aligned} & 0000_{\mathrm{H}} \\ & 008 \mathrm{H}_{\mathrm{H}} \\ & 009 \mathrm{O}_{\mathrm{H}} \\ & 010 \mathrm{H}^{2} \end{aligned}$	I/O area	0000	I/O area
	Access prohibited		Access prohibited		Access prohibited
	RAM 240 bytes		RAM 496 bytes		RAM 496 bytes
	Register		Register		Register
0F80н			Access prohibited	0F80н	Access prohibited
	Extension I/O area	1000 ${ }_{\text {H }}$	Extension I/O area		Extension I/O area
1000н	Access prohibited		Access prohibited	B000 ${ }^{\text {¢ }}$	Access prohibited
$\begin{aligned} & \mathrm{BOOOH} \\ & \mathrm{C} 00 \mathrm{O}_{\mathrm{H}} \end{aligned}$	Flash 4 Kbyte	$\begin{aligned} & \mathrm{B} 00 \mathrm{OH}_{\mathrm{H}} \\ & \mathrm{C} 00 \mathrm{O}_{\mathrm{H}} \end{aligned}$	Flash 4 Kbyte		
	Access prohibited	$\mathrm{E000} \mathrm{H}$	Access prohibited		Flash 20 Kbyte
$\mathrm{FOOOO}_{\mathrm{H}} \mathrm{FFFF}_{\mathrm{H}}$	Flash 4 Kbyte		Flash 8 Kbyte	$\mathrm{FFFFF}_{\text {H }}$	
		FFFF $_{\text {H }}$			

MB95560H/570H/580H Series

- I/O MAP (MB95560H Series)

Address	Register abbreviation	Register name	R/W	Initial value
0000 ${ }^{\text {H }}$	PDR0	Port 0 data register	R/W	00000000в
0001н	DDR0	Port 0 direction register	R/W	00000000в
0002н	PDR1	Port 1 data register	R/W	00000000в
0003н	DDR1	Port 1 direction register	R/W	00000000в
0004н	-	(Disabled)	-	-
0005 ${ }^{\text {¢ }}$	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	PLLC	PLL control register	R/W	000X0000в
0007н	SYCC	System clock control register	R/W	XXX11011в
0008н	STBC	Standby control register	R/W	00000000в
0009н	RSRR	Reset source register	R/W	000XXXXX ${ }_{\text {в }}$
000Ан	TBTC	Time-base timer control register	R/W	00000000в
000В н $^{\text {¢ }}$	WPCR	Watch prescaler control register	R/W	00000000в
000CH	WDTC	Watchdog timer control register	R/W	00XX0000в
000D	SYCC2	System clock control register 2	R/W	XXXX0011в
000Eн	STBC2	Standby control register 2	R/W	00000000в
000FH to 0015	-	(Disabled)	-	-
0016H	PDR6	Port 6 data register	R/W	00000000в
0017 ${ }_{\text {н }}$	DDR6	Port 6 direction register	R/W	00000000в
$\begin{aligned} & \text { 0018н } \\ & \text { to } \\ & 0027 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0028н	PDRF	Port F data register	R/W	00000000в
0029н	DDRF	Port F direction register	R/W	00000000в
002Ан	PDRG	Port G data register	R/W	00000000в
002В н $^{\text {¢ }}$	DDRG	Port G direction register	R/W	00000000в
002CH	PUL0	Port 0 pull-up register	R/W	00000000в
$\begin{aligned} & \text { 002Dн } \\ & \text { to } \\ & 0032 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0033 ${ }^{\text {¢ }}$	PUL6	Port 6 pull-up register	R/W	00000000в
0034н	-	(Disabled)	-	-
0035 ${ }^{\text {H }}$	PULG	Port G pull-up register	R/W	00000000в
0036н	T01CR1	8/16-bit composite timer 01 status control register 1	R/W	00000000в
0037 ${ }^{\text {¢ }}$	T00CR1	8/16-bit composite timer 00 status control register 1	R/W	00000000в
0038 ${ }^{\text {¢ }}$	T11CR1	8/16-bit composite timer 11 status control register 1	R/W	00000000в
0039н	T10CR1	8/16-bit composite timer 10 status control register 1	R/W	00000000в
$\begin{aligned} & 003 \text { Aн }^{2} \\ & \text { to } \\ & 0048 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-

(Continued)

MB95560H/570H/580H Series

Address	Register abbreviation	Register name	R/W	Initial value
0049н	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	00000000в
004Ан	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	00000000в
004Вн	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	00000000в
$\begin{aligned} & \hline 004 \mathrm{C}_{\mathrm{H}}, \\ & 004 \mathrm{D} \end{aligned}$	-	(Disabled)	-	-
004Ен	LVDR	LVDR reset voltage selection ID register	R/W	00000000в
004FH	-	(Disabled)	-	-
0050 ${ }^{\text {H }}$	SCR	LIN-UART serial control register	R/W	00000000в
0051н	SMR	LIN-UART serial mode register	R/W	00000000в
0052н	SSR	LIN-UART serial status register	R/W	00001000в
0053 ${ }^{\text {H }}$	RDR	LIN-UART receive data register	R/W	00000000в
	TDR	LIN-UART transmit data register	R/W	00000000в
0054н	ESCR	LIN-UART extended status control register	R/W	00000100в
0055н	ECCR	LIN-UART extended communication control register	R/W	000000XХв
$\begin{aligned} & 0056 \text { н } \\ & \text { to } \\ & 006 \mathrm{~B} \boldsymbol{H} \end{aligned}$	-	(Disabled)	-	-
006Cн	ADC1	8/10-bit A/D converter control register 1	R/W	00000000в
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	00000000в
006Eн	ADDH	8/10-bit A/D converter data register (upper)	R/W	00000000в
006Fн	ADDL	8/10-bit A/D converter data register (lower)	R/W	00000000в
0070 ${ }^{\text {H }}$	-	(Disabled)	-	-
0071н	FSR2	Flash memory status register 2	R/W	00000000в
0072н	FSR	Flash memory status register	R/W	000X0000в
0073н	SWRE0	Flash memory sector write control register 0	R/W	00000000в
0074н	FSR3	Flash memory status register 3	R	000XXXXX ${ }_{\text {в }}$
0075 ${ }^{\text {¢ }}$	FSR4	Flash memory status register 4	R/W	00000000в
0076н	WREN	Wild register address compare enable register	R/W	00000000в
0077 ${ }^{\text {H }}$	WROR	Wild register data test setting register	R/W	00000000в
0078H	-	Mirror of register bank pointer (RP) and direct bank pointer (DP)	-	-
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
007CH	ILR3	Interrupt level setting register 3	R/W	11111111в
007D	ILR4	Interrupt level setting register 4	R/W	11111111в
007Ен	ILR5	Interrupt level setting register 5	R/W	11111111в
007F	-	(Disabled)	-	-
0F80н	WRARH0	Wild register address setting register (upper) ch. 0	R/W	00000000в
0F81н	WRARLO	Wild register address setting register (lower) ch. 0	R/W	00000000в
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	00000000в

(Continued)

MB95560H/570H/580H Series

Address	Register abbreviation	Register name	R/W	Initial value
0F83н	WRARH1	Wild register address setting register (upper) ch. 1	R/W	00000000в
0F84н	WRARL1	Wild register address setting register (lower) ch. 1	R/W	00000000в
0F85	WRDR1	Wild register data setting register ch. 1	R/W	00000000в
0F86н	WRARH2	Wild register address setting register (upper) ch. 2	R/W	00000000в
0F87н	WRARL2	Wild register address setting register (lower) ch. 2	R/W	00000000в
0F88н	WRDR2	Wild register data setting register ch. 2	R/W	00000000в
$\begin{gathered} \text { 0F89н } \\ \text { to } \\ 0 F 91 \text { н } \end{gathered}$	-	(Disabled)	-	-
0F92н	T01CR0	8/16-bit composite timer 01 status control register 0	R/W	00000000в
0F93н	T00CR0	8/16-bit composite timer 00 status control register 0	R/W	00000000в
0F94н	T01DR	8/16-bit composite timer 01 data register	R/W	00000000в
0F95	T00DR	8/16-bit composite timer 00 data register	R/W	00000000в
0F96	TMCR0	8/16-bit composite timer 00/01 timer mode control register	R/W	00000000в
0F97н	T11CR0	8/16-bit composite timer 11 status control register 0	R/W	00000000в
0F98н	T10CR0	8/16-bit composite timer 10 status control register 0	R/W	00000000в
0F99н	T11DR	8/16-bit composite timer 11 data register	R/W	00000000в
0F9Aн	T10DR	8/16-bit composite timer 10 data register	R/W	00000000в
0F9Bн	TMCR1	8/16-bit composite timer 10/11 timer mode control register	R/W	00000000в
$\begin{aligned} & \text { 0F9Cн } \\ & \text { to } \\ & \text { 0FBB } \end{aligned}$	-	(Disabled)	-	-
OFBCH	BGR1	LIN-UART baud rate generator register 1	R/W	00000000в
0FBDн	BGR0	LIN-UART baud rate generator register 0	R/W	00000000в
$\begin{aligned} & \text { OFBEн } \\ & \text { to } \\ & \text { 0FC2н } \end{aligned}$	-	(Disabled)	-	-
0FC3н	AIDRL	A/D input disable register (lower)	R/W	00000000в
$\begin{aligned} & \text { OFC4н } \\ & \text { to } \\ & \text { OFE3н } \end{aligned}$	-	(Disabled)	-	-
0FE4н	CRTH	Main CR clock trimming register (upper)	R/W	000XXXXX ${ }_{\text {B }}$
0FE5	CRTL	Main CR clock trimming register (lower)	R/W	000XXXXXв
0FE6н	-	(Disabled)	-	-
0FE7н	CRTDA	Main CR clock temperature dependent adjustment register	R/W	000XXXXXв
0FE8н	SYSC	System configuration register	R/W	11000011в
0FE9н	CMCR	Clock monitoring control register	R/W	00000000в
OFEAн	CMDR	Clock monitoring data register	R	00000000в

(Continued)

MB95560H/570H/580H Series

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FEBн	WDTH	Watchdog timer selection ID register (upper)	R	XXXXXXXX
OFECH	WDTL	Watchdog timer selection ID register (lower)	R	XXXXXXXXв
$\begin{aligned} & \text { OFEDH } \\ & \text { to } \\ & \text { OFFF }_{H} \end{aligned}$	-	(Disabled)	-	-

- R/W access symbols

R/W : Readable / Writable
R : Read only

- Initial value symbols
$0 \quad$: The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$X \quad:$ The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an indeterminate value is returned.

MB95560H/570H/580H Series

- I/O MAP (MB95570H Series)

Address	Register abbreviation	Register name	R/W	Initial value
0000 ${ }^{\text {H }}$	PDR0	Port 0 data register	R/W	00000000в
0001н	DDR0	Port 0 direction register	R/W	00000000в
0002н	PDR1	Port 1 data register	R/W	00000000в
0003н	DDR1	Port 1 direction register	R/W	00000000в
0004н	-	(Disabled)	-	-
0005 ${ }^{\text {¢ }}$	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	PLLC	PLL control register	R/W	000X0000в
0007н	SYCC	System clock control register	R/W	XXX11011в
0008н	STBC	Standby control register	R/W	00000000в
0009н	RSRR	Reset source register	R/W	000XXXXX ${ }_{\text {в }}$
000Ан	TBTC	Time-base timer control register	R/W	00000000в
000В н $^{\text {¢ }}$	WPCR	Watch prescaler control register	R/W	00000000в
000CH	WDTC	Watchdog timer control register	R/W	00XX0000в
000D ${ }_{\text {н }}$	SYCC2	System clock control register 2	R/W	XXXX0011в
000Eн	STBC2	Standby control register 2	R/W	00000000в
$\begin{aligned} & 000 \mathrm{~F}_{\mathrm{H}} \\ & \text { to } \\ & 0027 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0028н	PDRF	Port F data register	R/W	00000000в
0029н	DDRF	Port F direction register	R/W	00000000в
$\begin{aligned} & \text { 002Ан, } \\ & \text { 002В } \end{aligned}$	-	(Disabled)	-	-
002Сн	PUL0	Port 0 pull-up register	R/W	00000000в
002D to 0035	-	(Disabled)	-	-
0036	T01CR1	8/16-bit composite timer 01 status control register 1	R/W	00000000в
0037 ${ }_{\text {н }}$	T00CR1	8/16-bit composite timer 00 status control register 1	R/W	00000000в
$\begin{aligned} & 0038 \mathrm{H} \\ & \text { to } \\ & 0049 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
004Ан	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	00000000в
004Вн	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	00000000в
$\begin{aligned} & \text { 004Сн, } \\ & 004 \mathrm{D} \end{aligned}$	-	(Disabled)	-	-
004Ен	LVDR	LVDR reset voltage selection ID register	R/W	00000000в
004FH to 006B	-	(Disabled)	-	-

(Continued)

MB95560H/570H/580H Series

Address	Register abbreviation	Register name	R/W	Initial value
006CH	ADC1	8/10-bit A/D converter control register 1	R/W	00000000в
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	00000000в
006Ен	ADDH	8/10-bit A/D converter data register (upper)	R/W	00000000в
006Fн	ADDL	8/10-bit A/D converter data register (lower)	R/W	00000000в
0070н	-	(Disabled)	-	-
0071н	FSR2	Flash memory status register 2	R/W	00000000в
0072н	FSR	Flash memory status register	R/W	000X0000в
0073н	SWRE0	Flash memory sector write control register 0	R/W	00000000в
0074н	FSR3	Flash memory status register 3	R	000XXXXXв
0075 ${ }^{\text {H }}$	FSR4	Flash memory status register 4	R/W	00000000в
0076	WREN	Wild register address compare enable register	R/W	00000000в
0077 ${ }^{\text {H }}$	WROR	Wild register data test setting register	R/W	00000000в
0078H	-	Mirror of register bank pointer (RP) and direct bank pointer (DP)	-	-
0079 ${ }_{\text {H }}$	ILR0	Interrupt level setting register 0	R/W	11111111 ${ }_{\text {b }}$
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
$\begin{aligned} & \text { 007Bн, } \\ & 007 \mathrm{C} \end{aligned}$	-	(Disabled)	-	-
007D	ILR4	Interrupt level setting register 4	R/W	11111111в
007Eн	ILR5	Interrupt level setting register 5	R/W	11111111в
007F\%	-	(Disabled)	-	-
0F80н	WRARH0	Wild register address setting register (upper) ch. 0	R/W	00000000в
0F81н	WRARLO	Wild register address setting register (lower) ch. 0	R/W	00000000в
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	00000000в
0F83н	WRARH1	Wild register address setting register (upper) ch. 1	R/W	00000000в
0F84н	WRARL1	Wild register address setting register (lower) ch. 1	R/W	00000000в
0F85н	WRDR1	Wild register data setting register ch. 1	R/W	00000000в
0F86н	WRARH2	Wild register address setting register (upper) ch. 2	R/W	00000000в
0F87\%	WRARL2	Wild register address setting register (lower) ch. 2	R/W	00000000в
0F88н	WRDR2	Wild register data setting register ch. 2	R/W	00000000в
$\begin{aligned} & \text { OF89н } \\ & \text { to } \\ & \text { 0F91н } \end{aligned}$	-	(Disabled)	-	-
0F92н	T01CR0	8/16-bit composite timer 01 status control register 0	R/W	00000000в
0F93н	T00CR0	8/16-bit composite timer 00 status control register 0	R/W	00000000в
0F94н	T01DR	8/16-bit composite timer 01 data register	R/W	00000000в
0F95	T00DR	8/16-bit composite timer 00 data register	R/W	00000000в
0F96 ${ }_{\text {н }}$	TMCR0	8/16-bit composite timer 00/01 timer mode control register	R/W	00000000в
$\begin{aligned} & \text { OF97н } \\ & \text { to } \\ & \text { 0FC2н } \end{aligned}$	-	(Disabled)	-	-

MB95560H/570H/580H Series

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FC3н	AIDRL	A/D input disable register (lower)	R/W	00000000в
$\begin{gathered} \text { OFC4н } \\ \text { to } \\ \text { OFEЗн } \end{gathered}$	-	(Disabled)	-	-
OFE4	CRTH	Main CR clock trimming register (upper)	R/W	000XXXXX
0FE5н	CRTL	Main CR clock trimming register (lower)	R/W	000XXXXX
0FE6н	-	(Disabled)	-	-
0FE7 ${ }^{\text {¢ }}$	CRTDA	Main CR clock temperature dependent adjustment register	R/W	000XXXXX
OFE8н	SYSC	System configuration register	R/W	11000011в
0FE9н	CMCR	Clock monitoring control register	R/W	00000000в
ОFЕАн	CMDR	Clock monitoring data register	R	00000000в
OFEB ${ }^{\text {¢ }}$	WDTH	Watchdog timer selection ID register (upper)	R	XXXXXXXX
OFECH	WDTL	Watchdog timer selection ID register (lower)	R	XXXXXXXX
$\begin{aligned} & \text { OFEDH } \\ & \text { to } \\ & \text { OFFFH } \end{aligned}$	-	(Disabled)	-	-

- R/W access symbols

R/W : Readable / Writable
R : Read only

- Initial value symbols
$0 \quad$: The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$X \quad$: The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an indeterminate value is returned.

MB95560H/570H/580H Series

■ I/O MAP (MB95580H Series)

Address	Register abbreviation	Register name	R/W	Initial value
0000 ${ }^{\text {H}}$	PDR0	Port 0 data register	R/W	00000000в
0001н	DDR0	Port 0 direction register	R/W	00000000в
0002н	PDR1	Port 1 data register	R/W	00000000в
0003н	DDR1	Port 1 direction register	R/W	00000000в
0004н	-	(Disabled)	-	-
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	PLLC	PLL control register	R/W	000X0000в
0007H	SYCC	System clock control register	R/W	XXX11011в
0008H	STBC	Standby control register	R/W	00000000в
0009н	RSRR	Reset source register	R/W	000XXXXX ${ }_{\text {в }}$
000Ан	TBTC	Time-base timer control register	R/W	00000000в
000Вн	WPCR	Watch prescaler control register	R/W	00000000в
000CH	WDTC	Watchdog timer control register	R/W	00XX0000в
000D	SYCC2	System clock control register 2	R/W	ХХХХ0011в
000Ен	STBC2	Standby control register 2	R/W	00000000в
000FH to 0027 H	-	(Disabled)	-	-
0028H	PDRF	Port F data register	R/W	00000000в
0029н	DDRF	Port F direction register	R/W	00000000в
002Ан	PDRG	Port G data register	R/W	00000000в
002В ${ }_{\text {н }}$	DDRG	Port G direction register	R/W	00000000в
002CH	PUL0	Port 0 pull-up register	R/W	00000000в
002D to 0034	-	(Disabled)	-	-
0035 ${ }^{\text {¢ }}$	PULG	Port G pull-up register	R/W	00000000в
0036н	T01CR1	8/16-bit composite timer 01 status control register 1	R/W	00000000в
0037 ${ }^{\text {H }}$	T00CR1	8/16-bit composite timer 00 status control register 1	R/W	00000000в
$\begin{gathered} \hline 0038 \mathrm{H} \\ \text { to } \\ 0048 \mathrm{H} \\ \hline \end{gathered}$	-	(Disabled)	-	-
0049н	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	00000000в
004Ан	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	00000000в
004Вн	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	00000000в
$\begin{aligned} & \text { 004Cн, } \\ & 004 \mathrm{D}_{\mathrm{H}} \end{aligned}$	-	(Disabled)	-	-
004Ен	LVDR	LVDR reset voltage selection ID register	R/W	00000000в
004FH	-	(Disabled)	-	-

(Continued)

MB95560H/570H/580H Series

Address	Register abbreviation	Register name	R/W	Initial value
0050н	SCR	LIN-UART serial control register	R/W	00000000в
0051н	SMR	LIN-UART serial mode register	R/W	00000000в
0052н	SSR	LIN-UART serial status register	R/W	00001000в
0053н	RDR	LIN-UART receive data register	R/W	00000000в
	TDR	LIN-UART transmit data register	R/W	00000000в
0054 ${ }_{\text {H }}$	ESCR	LIN-UART extended status control register	R/W	00000100в
0055	ECCR	LIN-UART extended communication control register	R/W	000000XXв
0056н to 006B	-	(Disabled)	-	-
006C ${ }_{\text {н }}$	ADC1	8/10-bit A/D converter control register 1	R/W	00000000в
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	00000000в
006Eн	ADDH	8/10-bit A/D converter data register (upper)	R/W	00000000в
006Fн	ADDL	8/10-bit A/D converter data register (lower)	R/W	00000000в
0070 ${ }^{\text {H }}$	-	(Disabled)	-	-
0071н	FSR2	Flash memory status register 2	R/W	00000000в
0072н	FSR	Flash memory status register	R/W	000X0000в
0073 ${ }^{\text {¢ }}$	SWRE0	Flash memory sector write control register 0	R/W	00000000в
0074н	FSR3	Flash memory status register 3	R	000XXXXX
0075 ${ }_{\text {н }}$	FSR4	Flash memory status register 4	R/W	00000000в
0076 ${ }^{\text {¢ }}$	WREN	Wild register address compare enable register	R/W	00000000в
0077 ${ }^{\text {H }}$	WROR	Wild register data test setting register	R/W	00000000в
0078H	-	Mirror of register bank pointer (RP) and direct bank pointer (DP)	-	-
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
007CH	-	(Disabled)	-	-
007D	ILR4	Interrupt level setting register 4	R/W	11111111в
007Eн	ILR5	Interrupt level setting register 5	R/W	11111111в
007FH	-	(Disabled)	-	-
0F80н	WRARH0	Wild register address setting register (upper) ch. 0	R/W	00000000в
0F81н	WRARLO	Wild register address setting register (lower) ch. 0	R/W	00000000в
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	00000000в
0F83н	WRARH1	Wild register address setting register (upper) ch. 1	R/W	00000000в
0F84н	WRARL1	Wild register address setting register (lower) ch. 1	R/W	00000000в
0F85 ${ }_{\text {¢ }}$	WRDR1	Wild register data setting register ch. 1	R/W	00000000в
0F86н	WRARH2	Wild register address setting register (upper) ch. 2	R/W	00000000в
0F87н	WRARL2	Wild register address setting register (lower) ch. 2	R/W	00000000в
0F88н	WRDR2	Wild register data setting register ch. 2	R/W	00000000в

(Continued)

MB95560H/570H/580H Series

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
$\begin{aligned} & \text { 0F89н } \\ & \text { to } \\ & \text { 0F91 } \end{aligned}$	-	(Disabled)	-	-
0F92н	T01CR0	8/16-bit composite timer 01 status control register 0	R/W	00000000в
0F93н	T00CR0	8/16-bit composite timer 00 status control register 0	R/W	00000000в
0F94н	T01DR	8/16-bit composite timer 01 data register	R/W	00000000в
0F95	T00DR	8/16-bit composite timer 00 data register	R/W	00000000в
0F96н	TMCR0	8/16-bit composite timer 00/01 timer mode control register	R/W	00000000в
$\begin{aligned} & \text { OF97н } \\ & \text { to } \\ & \text { OFBBн } \end{aligned}$	-	(Disabled)	-	-
OFBCH	BGR1	LIN-UART baud rate generator register 1	R/W	00000000в
0FBD	BGR0	LIN-UART baud rate generator register 0	R/W	00000000в
$\begin{aligned} & \text { OFBEн } \\ & \text { to } \\ & \text { OFC2н } \end{aligned}$	-	(Disabled)	-	-
0FC3н	AIDRL	A/D input disable register (lower)	R/W	00000000в
	-	(Disabled)	-	-
0FE4н	CRTH	Main CR clock trimming register (upper)	R/W	000XXXXX
0FE5	CRTL	Main CR clock trimming register (lower)	R/W	000XXXXXв
0FE6н	-	(Disabled)	-	-
0FE7н	CRTDA	Main CR clock temperature dependent adjustment register	R/W	000XXXXX ${ }_{\text {¢ }}$
0FE8н	SYSC	System configuration register	R/W	11000011в
0FE9н	CMCR	Clock monitoring control register	R/W	00000000в
0FEAн	CMDR	Clock monitoring data register	R	00000000в
0FEBн	WDTH	Watchdog timer selection ID register (upper)	R	XXXXXXXX
OFECн	WDTL	Watchdog timer selection ID register (lower)	R	XXXXXXXX
$\begin{aligned} & \text { OFED } \\ & \text { to } \\ & \text { OFFFH } \end{aligned}$	-	(Disabled)	-	-

- R/W access symbols

R/W : Readable / Writable
R : Read only

- Initial value symbols
$0 \quad$: The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$X \quad:$ The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an indeterminate value is returned.

MB95560H/570H/580H Series

INTERRUPT SOURCE TABLE (MB95560H Series)

Interrupt source	$\begin{array}{c}\text { Interrupt } \\ \text { request } \\ \text { number }\end{array}$	Vector table address	Upper	Lower	$\begin{array}{c}\text { Bit name of } \\ \text { interrupt level } \\ \text { setting register }\end{array}$
interruptsources					
of the same level					
(occurring					
simultaneously)					

MB95560H/570H/580H Series

INTERRUPT SOURCE TABLE (MB95570H Series)

| Interrupt source | $\begin{array}{c}\text { Interrupt } \\ \text { request } \\ \text { number }\end{array}$ | Vector table address | $\begin{array}{c}\text { Bit name of } \\ \text { interrupt level }\end{array}$ | $\begin{array}{c}\text { Priority order of } \\ \text { interruptsources } \\ \text { of the same level } \\ \text { (occurring }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Limultaneously) | | | |$)$

MB95560H/570H/580H Series

INTERRUPT SOURCE TABLE (MB95580H Series)

MB95560H/570H/580H Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6	V	
Input voltage*1	V_{1}	Vss - 0.3	$\mathrm{Vss}+6$	V	*2
Output voltage*1	Vo	Vss - 0.3	$\mathrm{Vss}+6$	V	*2
Maximum clamp current	Iclamp	-2	+2	mA	Applicable to specific pins*3
Total maximum clamp current	$\Sigma \mid$ Iclamp \|	-	20	mA	Applicable to specific pins*3
"L" level maximum output current	loL	-	15	mA	
"L" level average current	lolav1	-	4	mA	Other than P00 to P03, P05 to P07, P62 to P64 ${ }^{4}$ Average output current= operating current \times operating ratio (1 pin)
	lolav2		12		P00 to P03, P05 to P07, P62 to P64*4 Average output current= operating current \times operating ratio (1 pin)
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	50	mA	Total average output current= operating current \times operating ratio (Total number of pins)
"H" level maximum output current	Іон	-	-15	mA	
" H " level average current	Іohav1	-	-4	mA	Other than P00 to P03, P05 to P07, P62 to P64 ${ }^{4}$ Average output current= operating current \times operating ratio (1 pin)
	Іонav2		-8		P00 to P03, P05 to P07, P62 to P64*4 Average output current= operating current \times operating ratio (1 pin)
"H" level total maximum output current	Σ Іон	-	-100	mA	
" H " level total average output current	Σ Iohav	-	-50	mA	Total average output current= operating current \times operating ratio (Total number of pins)
Power consumption	$\mathrm{Pd}_{\text {d }}$	-	320	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55	+150	${ }^{\circ} \mathrm{C}$	

(Continued)

MB95560H/570H/580H Series

(Continued)

*1: These parameters are based on the condition that V ss is 0.0 V .
${ }^{*} 2$: V_{l} and V_{0} must not exceed $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$. V_{1} must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the Iclamp rating is used instead of the V_{1} rating.
*3: Applicable to the following pins: P00 to P07, P62 to P64, PF0, PF1, PG1, PG2 (P00, and P62 to P64 are only available on MB95F562H/F562K/F563H/F563K/F564H/F564K. P01, P02, P03, P07, PF0. PF1, PG1, and PG2 are only available on MB95F562H/F562K/F563H/F563K/F564H/F564K/F582H/F582K/F583H/ F583K/F584H/F584K.)

- Use under recommended operating conditions.
- Use with DC voltage (current).
- The HV (High Voltage) signal is an input signal exceeding the Vcc voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
- The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
- When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the Vcc pin, affecting other devices.
- If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
- If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
- Do not leave the HV (High Voltage) input pin unconnected.
- Example of a recommended circuit:

- Input/Output equivalent circuit

*4: P62 and P63 are only available on MB95F562H/F562K/F563H/F563K/F564H/F564K.
WARNING: Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

2. Recommended Operating Conditions

$$
(\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V})
$$

Parameter	Symbol	Value		Unit	Remarks	
		Min	Max			
Power supply voltage	Vcc	$2.4^{* 1, * 2}$	5.5*1	V	In normal operation	Other than on-chip debug mode
		2.3	5.5		Hold condition in stop mode	
		2.9	5.5		In normal operation	On-chip debug mode
		2.3	5.5		Hold condition in stop mode	
Decoupling capacitor	Cs	0.022	1	$\mu \mathrm{F}$	*3	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	Other than on-chip debug mode	
		+5	+35		On-chip debug mode	

*1: The value varies depending on the operating frequency, the machine clock and the analog guaranteed range.
*2: The minimum power supply voltage becomes 2.88 V when a product with the low-voltage detection reset is used.
*3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the V_{cc} pin must have a capacitance equal to or larger than the capacitance of Cs. For the connection to a decoupling capacitor Cs , see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and Cs and the distance between Cs and the $V_{s s}$ pin when designing the layout of a printed circuit board.

- DBG / $\overline{\mathrm{RST}} / \mathrm{C}$ pins connection diagram

*: Connect the DBG pin to an external pull-up resistor of $2 \mathrm{k} \Omega$ or above. After power-on, ensure that the DBG pin does not stay at "L" level until the reset output is released. The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.
Any use of semiconductor devices will be under their recommended operating condition.
Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.
No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

MB95560H/570H/580H Series

3. DC Characteristics

$$
\left(\mathrm{V} \mathrm{CC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"H" level input voltage	$\mathrm{V}_{\text {IH }}$	P04	-	0.7 Vcc	-	V cc +0.3	V	Hysteresis input
	Vihs	$\begin{aligned} & \text { P00*3 to P03*4, } \\ & \text { P05 to P07*4, } \\ & \text { P12, } \\ & \text { P62 to P64*3, } \\ & \text { PFO }^{* 4}, \text { PF1 }^{* 4}, \\ & \text { PG1 }^{* 4}, \text { PG2 }^{* 4} \end{aligned}$	-	0.8 Vcc	-	V cc +0.3	V	Hysteresis input
	VIHM	PF2	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Hysteresis input
"L" level input voltage	VIL	P04	-	Vss - 0.3	-	0.3 Vcc	V	Hysteresis input
	Vils	$\begin{aligned} & \text { P00*3 to P03*4, } \\ & \text { P05 to P07*4, } \\ & \text { P12, } \\ & \text { P62 to P64*3, } \\ & \text { PFO*4, PF1*4, }^{* 4} \\ & \text { PG1 }^{* 4}, \text { PG2 }^{* 4} \end{aligned}$	-	Vss - 0.3	-	0.2 Vcc	V	Hysteresis input
	Vilm	PF2	-	Vss - 0.3	-	0.2 Vcc	V	Hysteresis input
Open-drain output application voltage	V	P12, PF2	-	Vss - 0.3	-	Vss +5.5	V	
"H" level output voltage	Voh1	$\begin{aligned} & \text { P04, PFO*4, } \\ & \text { PF1*4, PG1*4, } \\ & \text { PG2 } \end{aligned}$	$\mathrm{loH}=-4 \mathrm{~mA}$	Vcc-0.5	-	-	V	
	Vон2	$\begin{aligned} & \text { P00*3 to P03*4, } \\ & \text { P05 to P07*4, } \\ & \text { P62 to P64*3 } \end{aligned}$	$\mathrm{lor}=-8 \mathrm{~mA}$	V cc - 0.5	-	-	V	
"L" level output voltage	Vol1	$\begin{aligned} & \text { P04, P12, } \\ & \text { PF0 to PF2*4, } \\ & \text { PG1*4, PG2*4 } \end{aligned}$	$\mathrm{loL}=4 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	$\begin{aligned} & \text { P00*3 to P03*4, } \\ & \text { P05 to P07*4, } \\ & \text { P62 to P64*3 } \end{aligned}$	$\mathrm{loL}=12 \mathrm{~mA}$	-	-	0.4	V	
Input leak current (Hi-Z output leak current)	1 l I	All input pins	0.0 V < $\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-5	-	+5	$\mu \mathrm{A}$	When the internal pull-up resistor is disabled
Internal pull-up resistor	Rpull	$\begin{aligned} & \text { P00*3 to P07*4, } \\ & \text { P62 to P64*3, } \\ & \text { PG1*4, PG2*4 } \end{aligned}$	V I $=0 \mathrm{~V}$	25	50	100	$k \Omega$	When the internal pull-up resistor is enabled
Input capacitance	Cin	Other than V_{cc} and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	5	15	pF	

(Continued)

MB95560H/570H/580H Series

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ*1	Max ${ }^{\text {2 }}$		
Power supply current*5	Icc	Vcc (External clock operation)	$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=32 \mathrm{MHz} \\ & \text { FMP }^{\mathrm{M}}=16 \mathrm{MHz} \\ & \text { Main clock mode } \\ & \text { (divided by 2) } \end{aligned}$	-	3.5	4.4	mA	Except during Flash memory programming and erasing
				-	7.4	9.8	mA	During Flash memory programming and erasing
				-	5.1	6.4	mA	At A/D conversion
	Icos		$\begin{array}{\|l} \hline \text { Fch }=32 \mathrm{MHz} \\ \text { Fmp }_{\mathrm{MP}}=16 \mathrm{MHz} \\ \text { Main sleep mode } \\ \text { (divided by 2) } \end{array}$	-	1.2	1.5	mA	
	Iccı		$F_{\mathrm{CL}}=32 \mathrm{kHz}$ $\mathrm{F}_{\mathrm{MPL}}=16 \mathrm{kHz}$ Subclock mode (divided by 2) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	65	71	$\mu \mathrm{A}$	
	Iccls**		$\begin{aligned} & \hline \text { FCL }=32 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz} \\ & \text { Subsleep mode } \\ & \text { (divided by 2) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	5.4	7	$\mu \mathrm{A}$	In deep standby mode
	$\mathrm{Icct}{ }^{* 6}$		FcL $=32 \mathrm{kHz}$ Watch mode $T_{A}=+25^{\circ} \mathrm{C}$	-	4.8	6.9	$\mu \mathrm{A}$	In deep standby mode
	Iccmcr	V cc	$\begin{array}{\|l\|} \hline \mathrm{F}_{\text {CRH }}=4 \mathrm{MHz} \\ \mathrm{~F}_{\mathrm{MP}}=4 \mathrm{MHz} \\ \text { Main CR clock mode } \end{array}$	-	1.1	1.4	mA	
	Iccscr		Sub-CR clock mode (divided by 2) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	58	64	$\mu \mathrm{A}$	
	Iccts	Vcc (External clock operation)	$\mathrm{F}_{\mathrm{CH}}=32 \mathrm{MHz}$ Time-base timer mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	290	340	$\mu \mathrm{A}$	In deep standby mode
	Ic ¢		Main stop mode (single external clock product)/ Substop mode (dual external clock product) $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	4.1	6.5	$\mu \mathrm{A}$	In deep standby mode

(Continued)

MB95560H/570H/580H Series

(Continued)
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ*1	Max ${ }^{\text {2 }}$		
Power supply current*5	ILvD	Vcc	Current consumption for the low-voltage detection circuit	-	3.6	6.6	$\mu \mathrm{A}$	
	Icri		Current consumption for the main CR oscillator	-	220	280	$\mu \mathrm{A}$	
	Icrl		Current consumption for the sub-CR oscillator oscillating at 100 kHz	-	5.1	9.3	$\mu \mathrm{A}$	
	Instby		Current consumption difference between normal standby mode and deep standby mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	20	30	$\mu \mathrm{A}$	

${ }^{*} 1: \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
*2: $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ (unless otherwise specified)
*3: P00, P62, P63 and P64 are only available on MB95F562H/F562K/F563H/F563K/F564H/F564K.
*4: P01, P02, P03, P07, PF0, PF1, PG1 and PG2 are only available on MB95F562H/F562K/F563H/F563K/ F564H/F564K/F582H/F582K/F583H/F583K/F584H/F584K.
*5: - The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (lıvD) to one of the value from Icc to $\mathrm{I}_{\mathrm{Icн}}$. In addition, when both the low-voltage detection option and the CR oscillator are selected, the power supply current will be the sum of adding up the current consumption of the low-voltage detection circuit, the current consumption of the CR oscillators (Icre, Icrl) and a specified value. In on-chip debug mode, the CR oscillator (ICRH) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.

- See "4. AC Characteristics: (1) Clock Timing" for Fch and Fcl.
- See "4. AC Characteristics: (2) Source Clock / Machine Clock" for FMP and FMPL.
*6: In sub-CR clock mode, the power supply current value is the sum of adding Icrl to Iccls or Icct. In addition, when the sub-CR clock mode is selected with Fmpl being 50 kHz , the current consumption increases accordingly.

MB95560H/570H/580H Series

4. AC Characteristics
(1) Clock Timing
$\left(\mathrm{Vcc}=2.4 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	$\mathrm{Fch}^{\text {cher }}$	X0, X1	-	1	-	16.25	MHz	When the main oscillation circuit is used
		X0	X1: open	1	-	12	MHz	When the main external clock is used
		X0, X1	*	1	-	32.5	MHz	
	Fcri	-	-	3.92	4	4.08	MHz	Operating conditions - The main CR clock is used. - $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
				3.8	4	4.2	MHz	Operating conditions - The main CR clock is used. - $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$, $+70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
	Fmcrpll	-	-	7.84	8	8.16	MHz	Operating conditions - PLL multiplication rate: 2 - $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
				7.6	8	8.4	MHz	Operating conditions - PLL multiplication rate: 2 - $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$, $+70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
				9.8	10	10.2	MHz	Operating conditions - PLL multiplication rate: 2.5 - $0{ }^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
				9.5	10	10.5	MHz	Operating conditions - PLL multiplication rate: 2.5 - $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$, $+70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
				11.76	12	12.24	MHz	Operating conditions - PLL multiplication rate: 3 - $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
				11.4	12	12.6	MHz	Operating conditions - PLL multiplication rate: 3 - $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$, $+70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
				15.68	16	16.32	MHz	Operating conditions - PLL multiplication rate: 4 - $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
				15.2	16	16.8	MHz	Operating conditions - PLL multiplication rate: 4 - $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$, $+70^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
	FcL	X0A, X1A	-	-	32.768	-	kHz	When the suboscillation circuit is used
				-	32.768	-	kHz	When the sub-external clock is used
	FCRL	-	-	50	100	150	kHz	When the sub-CR clock is used

(Continued)

MB95560H/570H/580H Series

(Continued)
$\left(\mathrm{Vcc}=2.4 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Clock cycle time	thcyl	X0, X1	-	61.5	-	1000	ns	When the main oscillation circuit is used
		X0	X1: open	83.4	-	1000	ns	When an external clock is used
		X0, X1	*	30.8	-	1000	ns	
	tıCyL	X0A, X1A	-	-	30.5	-	$\mu \mathrm{s}$	When the subclock is used
Input clock pulse width	twhi, twL1	X0	X1: open	33.4	-	-	ns	When an external clock is used, the duty ratio should range between 40% and 60%.
		X0, X1	*	12.4	-	-	ns	
	twh2, twL2	XOA	-	-	15.2	-	$\mu \mathrm{S}$	
Input clock rising time and falling time	tcr, tcF	X0, X0A	X1: open	-	-	5	ns	When an external clock is used
		$\begin{aligned} & \mathrm{X0}, \mathrm{X1} \\ & \mathrm{X0A}, \mathrm{X} 1 \mathrm{~A} \end{aligned}$	*	-	-	5	ns	
CR oscillation start time	tcriwk	-	-	-	-	50	$\mu \mathrm{s}$	When the main CR clock is used
	tcrlwk	-	-	-	-	30	$\mu \mathrm{s}$	When the sub-CR clock is used

*: The external clock signal is input to X 0 and the inverted external clock signal to X 1 .

MB95560H/570H/580H Series

- Input waveform generated when an external clock (main clock) is used

- Figure of main clock input port external connection

When a crystal oscillator or
a ceramic oscillator is used

When an external clock is used (X 1 is open)

When an external clock
is used

- Input waveform generated when an external clock (subclock) is used

- Figure of subclock input port external connection

When a crystal oscillator or a ceramic oscillator is used

When an external clock
is used

MB95560H/570H/580H Series

(2) Source Clock / Machine Clock

$$
\left(\mathrm{V} \mathrm{CC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Source clock cycle time*1	tsclk	-	61.5	-	2000	ns	When the main external clock is used Min: $\mathrm{F}_{\mathrm{CH}}=32.5 \mathrm{MHz}$, divided by 2 Max: $\mathrm{F}_{\mathrm{CH}}=1 \mathrm{MHz}$, divided by 2
			62.5	-	1000	ns	When the main CR clock is used Min: Fcrh $=4 \mathrm{MHz}$, multiplied by 4 Max: $\mathrm{F}_{\mathrm{crH}}=4 \mathrm{MHz}$, divided by 4
			-	61	-	$\mu \mathrm{s}$	When the suboscillation clock is used Fcl $=32.768 \mathrm{kHz}$, divided by 2
			-	20	-	$\mu \mathrm{s}$	When the sub-CR clock is used $\mathrm{F}_{\mathrm{CRL}}=100 \mathrm{kHz}$, divided by 2
Source clock frequency	Fsp	-	0.5	-	16.25	MHz	When the main oscillation clock is used
			-	4	-	MHz	When the main CR clock is used
	FspL		-	16.384	-	kHz	When the suboscillation clock is used
			-	50	-	kHz	When the sub-CR clock is used $\mathrm{F}_{\mathrm{CRL}}=100 \mathrm{kHz}$, divided by 2
Machine clock cycle time*2 (minimum instruction execution time)	tmclk	-	61.5	-	32000	ns	When the main oscillation clock is used Min: $F_{\text {SP }}=16.25 \mathrm{MHz}$, no division Max: Fsp $=0.5 \mathrm{MHz}$, divided by 16
			250	-	1000	ns	When the main CR clock is used Min: Fsp $=4 \mathrm{MHz}$, no division Max: Fsp $=4 \mathrm{MHz}$, divided by 4
			61	-	976.5	$\mu \mathrm{s}$	When the suboscillation clock is used Min: FspL $=16.384$ kHz, no division Max: Fspl $=16.384 \mathrm{kHz}$, divided by 16
			20	-	320	$\mu \mathrm{s}$	When the sub-CR clock is used Min: Fspl $=50 \mathrm{kHz}$, no division Max: Fspl $=50 \mathrm{kHz}$, divided by 16
Machine clock frequency	F_{MP}	-	0.031	-	16.25	MHz	When the main oscillation clock is used
			0.25	-	16	MHz	When the main CR clock is used
	FMPL		1.024	-	16.384	kHz	When the suboscillation clock is used
			3.125	-	50	kHz	When the sub-CR clock is used FCRL $=100 \mathrm{kHz}$

${ }^{*}$: This is the clock before it is divided according to the division ratio set by the machine clock division ratio select bits (SYCC:DIV[1:0]). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio select bits (SYCC:DIV[1:0]). In addition, a source clock can be selected from the following.

- Main clock divided by 2
- Main CR clock
- PLL multiplication of main CR clock (Select a multiplication rate from 2, 2.5, 3 and 4.)
- Subclock divided by 2
- Sub-CR clock divided by 2
*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.
- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

MB95560H/570H/580H Series

- Operating voltage - Operating frequency $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Without the on-chip debug function

- Operating voltage - Operating frequency $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

With the on-chip debug function

MB95560H/570H/580H Series

(3) External Reset

$$
\left(\mathrm{V} \mathrm{CC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
$\overline{R S T}$ " L " level pulse width	$t_{\text {RStL }}$	2 tmcLk* ${ }^{\text {* }}$	-	ns	In normal operation
		Oscillation time of the oscillator*2 +200	-	$\mu \mathrm{s}$	In stop mode, subclock mode, subsleep mode, watch mode, and power-on
		200	-	$\mu \mathrm{s}$	In time-base timer mode

*1: See "(2) Source Clock / Machine Clock" for tmclк.
*2: The oscillation time of an oscillator is the time for it to reach 90% of its amplitude. The crystal oscillator has an oscillation time of between several ms and tens of ms . The ceramic oscillator has an oscillation time of between hundreds of $\mu \mathrm{s}$ and several ms . The external clock has an oscillation time of 0 ms . The CR oscillator has an oscillation time of between several $\mu \mathrm{s}$ and several ms .

- In normal operation
$\overline{R S T}$

- In stop mode, subclock mode, subsleep mode, watch mode and power-on

MB95560H/570H/580H Series

(4) Power-on Reset

$\left(\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85{ }^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
Power supply rising time	t_{R}	-	-	50	ms	
Power supply cutoff time	toff	-	1	-	ms	Wait time until power-on

Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within $30 \mathrm{mV} / \mathrm{ms}$ as shown below.

MB95560H/570H/580H Series

(5) Peripheral Input Timing

$$
\left(\mathrm{V} \mathrm{CC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Value		Unit
			Min	Max	
Peripheral input "H" pulse width	tııı	INT02 to INT07*1,*2, EC0*1, EC1*3	2 tmсLк*4	-	ns
Peripheral input "L" pulse width	thill		2 tmclk $^{* 4}$	-	ns

*1: INT04, INT06 and EC0 are available on all products.
*2: INT02, INT03, INT05 and INT07 are only available on MB95F562H/F562K/F563H/F563K/F564H/F564K/ F582H/F582K/F583H/F583K/F584H/F584K.
*3: EC1 is only available on MB95F562H/F562K/F563H/F563K/F564H/F564K.
*4: See "(2) Source Clock / Machine Clock" for tmclk.

MB95560H/570H/580H Series

(6) LIN-UART Timing (only available on MB95F562H/F562K/F563H/F563K/F564H/F564K/F582H/F582K/ F583H/F583K/F584H/F584K)
Sampling is executed at the rising edge of the sampling clock ${ }^{\star 1}$, and serial clock delay is disabled*2. (ESCR register: SCES bit $=0$, ECCR register: SCDE bit $=0$)
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AVss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operation output pin: $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	5 tmсLk $^{* 3}$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	SCK, SOT		-50	+50	ns
Valid SIN \rightarrow SCK \uparrow	tivshi	SCK, SIN		tmaLk $^{* 3}+80$	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixi	SCK, SIN		0	-	ns
Serial clock "L" pulse width	tsLSH	SCK	External clock operation output pin: $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	$3 \mathrm{tmCLK}^{* 3}-\mathrm{tR}$	-	ns
Serial clock "H" pulse width	tshsL	SCK		tmaLk $^{* 3}+10$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslove	SCK, SOT		-	2 tmсLк $^{* 3}+60$	ns
Valid SIN \rightarrow SCK \uparrow	tivshe	SCK, SIN		30	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixe	SCK, SIN		tmaLk $^{* 3}+30$	-	ns
SCK fall time	t_{F}	SCK		-	10	ns
SCK rise time	t_{R}	SCK		-	10	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.
*3: See "(2) Source Clock / Machine Clock" for tmclk.

MB95560H/570H/580H Series

- Internal shift clock mode

- External shift clock mode

MB95560H/570H/580H Series

Sampling is executed at the falling edge of the sampling clock*1, and serial clock delay is disabled*2. (ESCR register: SCES bit $=1$, ECCR register: SCDE bit $=0$)

			($\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$,	0.0 V ,	-40	${ }^{\circ} \mathrm{C}$)
				Val	lue	
Parameter	Sy	Pin	Condition	Min	Max	
Serial clock cycle time	tscyc	SCK		5 tmсLк*3 $^{\text {* }}$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	SCK, SOT		-50	+50	ns
Valid SIN \rightarrow SCK \downarrow	tivsLı	SCK, SIN	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	tıсLк*3 +80	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tsuıx	SCK, SIN		0	-	ns
Serial clock "H" pulse width	tshsL	SCK		3 tmaLk $^{* 3}-\mathrm{tr}^{\text {R }}$	-	ns
Serial clock "L" pulse width	tsLsh	SCK		tmack $^{* 3}+10$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshove	SCK, SOT	External clock	-	2 tMCLK $^{* 3}+60$	ns
Valid SIN \rightarrow SCK \downarrow	tivsLe	SCK, SIN	operation output pin:	30	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tslixe	SCK, SIN	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	tmCLK $^{* 3}+30$	-	ns
SCK fall time	t_{F}	SCK		-	10	ns
SCK rise time	tR	SCK		-	10	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.
*3: See "(2) Source Clock / Machine Clock" for tmсlк.

MB95560H/570H/580H Series

- Internal shift clock mode

- External shift clock mode

MB95560H/570H/580H Series

Sampling is executed at the rising edge of the sampling clock*1, and serial clock delay is enabled*2. (ESCR register: SCES bit = 0, ECCR register: SCDE bit = 1)
$\left(\mathrm{VCc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operation output pin: $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	5 tmсLk $^{* 3}$	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	SCK, SOT		-50	+50	ns
Valid SIN \rightarrow SCK \downarrow	tivsuı	SCK, SIN		tмсLк*3 +80	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tstıxı	SCK, SIN		0	-	ns
SOT \rightarrow SCK \downarrow delay time	tsovLI	SCK, SOT		3 tmcLk*3 -70	-	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.
*3: See "(2) Source Clock / Machine Clock" for tmclк.

MB95560H/570H/580H Series

Sampling is executed at the falling edge of the sampling clock*1, and serial clock delay is enabled*2. (ESCR register: SCES bit = 1, ECCR register: SCDE bit = 1)

			$(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%,$	$\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}$		$\left.5^{\circ} \mathrm{C}\right)$
				Val		
Par	Symbol	Pi	Condition	Min	Max	
Serial clock cycle time	tscyc	SCK		5 tmсLk*3	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	SCK, SOT	Internal clock	-50	+50	ns
Valid SIN \rightarrow SCK \uparrow	tivshi	SCK, SIN	operating output pin:	tıCLK*3 +80	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixI	SCK, SIN	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	0	-	ns
SOT \rightarrow SCK \uparrow delay time	tsovil	SCK, SOT		3 tmсLк*3 -70	-	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.
*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.
*3: See "(2) Source Clock / Machine Clock" for tmclk.

MB95560H/570H/580H Series

(7) Low-voltage Detection
$\left(\mathrm{V}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Release voltage*	VDL+	2.52	2.7	2.88	V	At power supply rise
		2.61	2.8	2.99		
		2.89	3.1	3.31		
		3.08	3.3	3.52		
Detection voltage*	VDL-	2.43	2.6	2.77	V	At power supply fall
		2.52	2.7	2.88		
		2.80	3	3.20		
		2.99	3.2	3.41		
Hysteresis width	V ${ }^{\text {HYS }}$	-	100	-	mV	
Power supply start voltage	$\mathrm{V}_{\text {off }}$	-	-	2.3	V	
Power supply end voltage	Von	4.9	-	-	V	
Power supply voltage change time (at power supply rise)	tr	650	-	-	$\mu \mathrm{s}$	Slope of power supply that the reset release signal generates within the rating (VDL+)
Power supply voltage change time (at power supply fall)	$t_{\text {f }}$	650	-	-	$\mu \mathrm{s}$	Slope of power supply that the reset detection signal generates within the rating (VDL-)
Reset release delay time	td1	-	-	30	$\mu \mathrm{s}$	
Reset detection delay time	td2	-	-	30	$\mu \mathrm{s}$	
LVD threshold voltage transition stabilization time	tsts	10	-	-	$\mu \mathrm{s}$	

*: The release voltage and the detection voltage can be selected by using the LVD reset voltage selection ID register (LVDR) in the low-voltage detection reset circuit. For details of the LVDR register, refer to "CHAPTER 18 LOW-VOLTAGE DETECTION RESET CIRCUIT" in "New 8FX MB95560H/570H/580H Series Hardware Manual".

MB95560H/570H/580H Series

5. A/D Converter
(1) A / D Converter Electrical Characteristics
$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Resolution	-	-	-	10	bit	
Total error		-3	-	+3	LSB	
Linearity error		-2.5	-	+2.5	LSB	
Differential linearity error		-1.9	-	+1.9	LSB	
Zero transition voltage	Vot	Vss - 1.5 LSB	Vss + 0.5 LSB	Vss + 2.5 LSB	V	
Full-scale transition voltage	$V_{\text {FSt }}$	Vcc-4.5 LSB	Vcc-2 LSB	Vcc +0.5 LSB	V	
Compare time	-	1	-	10	us	$4.5 \mathrm{~V} \leq \mathrm{V}$ cc $\leq 5.5 \mathrm{~V}$
		3	-	10	$\mu \mathrm{s}$	$2.7 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
Sampling time	-	0.6	-	∞	$\mu \mathrm{s}$	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5 \mathrm{~V}$, with external impedance $<3.3 \mathrm{k} \Omega$
Analog input current	Iain	-0.3	-	+0.3	$\mu \mathrm{A}$	
Analog input voltage	Vain	Vss	-	Vcc	V	

MB95560H/570H/580H Series

(2) Notes on Using A/D Converter

- External impedance of analog input and its sampling time

The A/D converter of the MB95560H/570H/580H Series has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.

- Analog input equivalent circuit

Vcc	\mathbf{R}	\mathbf{C}
$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{cc} \leq 5.5 \mathrm{~V}$	$1.45 \mathrm{k} \Omega$ (Max)	14.89 pF (Max)
$2.7 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$	$2.7 \mathrm{k} \Omega$ (Max)	14.89 pF (Max)

Note: The values are reference values.

- A/D conversion error

As |Vcc - Vss| decreases, the A/D conversion error increases proportionately.

MB95560H/570H/580H Series

(3) Definitions of A/D Converter Terms

- Resolution

It indicates the level of analog variation that can be distinguished by the A/D converter.
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit: LSB)

It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("0000000000" $\leftarrow \rightarrow$ " 0000000001 ") of a device to the full-scale transition point (" 1111111111 " \leftarrow \rightarrow "1111111110") of the same device.

- Differential linear error (unit: LSB)

It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.

- Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

(Continued)

MB95560H/570H/580H Series

(Continued)

MB95560H/570H/580H Series

6. Flash Memory Program/Erase Characteristics

Parameter	Value			Unit	Remarks	
	Min	Typ	Max			
Sector erase time (2 Kbyte sector)	-	$0.3^{\star 1}$	$1.6^{\star 2}$	s	The time of writing 00н prior to erasure is excluded.	
Sector erase time (16 Kbyte sector)	-	$0.6^{\star 1}$	$3.1^{* 2}$	s	The time of writing 00н prior to erasure is excluded.	
Byte writing time	-	17	272	$\mu \mathrm{~s}$	System-level overhead is excluded.	
Program/erase cycle	100000	-	-	cycle		
Power supply voltage at program/erase	2.4	-	5.5	V		
Flash memory data retention time	$5^{\star 3}$	-	-	year	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	

*1: $\mathrm{V} \mathrm{cc}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 0$ cycle
*2: $\mathrm{Vcc}=2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}, 100000$ cycles
*3: This value was converted from the result of a technology reliability assessment. (The value was converted from the result of a high temperature accelerated test using the Arrhenius equation with an average temperature of $+85^{\circ} \mathrm{C}$).

MB95560H/570H/580H Series

SAMPLE CHARACTERISTICS

- Power supply current temperature characteristics

$$
\mathrm{Icc}-\mathrm{V}_{\mathrm{cc}}
$$

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MP}}=2,4,8,10,16 \mathrm{MHz}$ (divided by 2)
Main clock mode with the external clock operating

Iccs - Vcc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MP}}=2,4,8,10,16 \mathrm{MHz}$ (divided by 2)
Main sleep mode with the external clock operating

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MPL}}=16 \mathrm{kHz}$ (divided by 2)
Subclock mode with the external clock operating

$$
\mathrm{Icc}-\mathrm{T}_{\mathrm{A}}
$$

$V_{c c}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{MP}}=10,16 \mathrm{MHz}$ (divided by 2) Main clock mode with the external clock operating

Iccs $-\mathrm{T}_{\mathrm{A}}$
$\mathrm{V} \mathrm{cc}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{mp}}=10,16 \mathrm{MHz}$ (divided by 2) Main sleep mode with the external clock operating

$\mathrm{Iccl}-\mathrm{T}_{\mathrm{A}}$
$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz}$ (divided by 2)
Subclock mode with the external clock operating

(Continued)

MB95560H/570H/580H Series

Iccls - Vcc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MPL}}=16 \mathrm{kHz}$ (divided by 2) Subsleep mode with the external clock operating

Icct - V cc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MPL}}=16 \mathrm{kHz}$ (divided by 2)
Watch mode with the external clock operating

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MP}}=2,4,8,10,16 \mathrm{MHz}$ (divided by 2) Time-base timer mode with the external clock operating

Iccls - TA

$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz}$ (divided by 2) Subsleep mode with the external clock operating

Icct $-\mathrm{T}_{\mathrm{A}}$
$\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz}$ (divided by 2)
Watch mode with the external clock operating

$V_{c c}=5.5 \mathrm{~V}, F_{M P}=10,16 \mathrm{MHz}$ (divided by 2)
Time-base timer mode with the external clock operating

MB95560H/570H/580H Series

(Continued)

Icch - Vcc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MPL}}=($ stop $)$
Substop mode with the external clock stopping

Iccmcr - Vcc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MP}}=4 \mathrm{MHz}$ (no division)
Main clock mode with the main CR clock operating

Iccscr-Vcc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MPL}}=50 \mathrm{kHz}$ (divided by 2)
Subclock mode with the sub-CR clock operating

Icch - T_{A}
$\mathrm{V}_{c \mathrm{c}}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{MPL}}=(\mathrm{stop})$
Substop mode with the external clock stopping

Iccmcr - T_{A}
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{MP}}=4 \mathrm{MHz}$ (no division) Main clock mode with the main CR clock operating

$\operatorname{Iccsc}-\mathrm{T}_{\mathrm{A}}$
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{MpL}}=50 \mathrm{kHz}$ (divided by 2) Subclock mode with the sub-CR clock operating

MB95560H/570H/580H Series

- Input voltage characteristics

MB95560H/570H/580H Series

- Output voltage characteristics

MB95560H/570H/580H Series

- Pull-up characteristics

MB95560H/570H/580H Series

MASK OPTIONS

No.	Part Number	MB95F562H MB95F563H MB95F564H MB95F572H MB95F573H MB95F574H MB95F582H MB95F583H MB95F584H	MB95F562K MB95F563K MB95F564K MB95F572K MB95F573K MB95F574K MB95F582K MB95F583K MB95F584K
	Selectable/Fixed	Fixed	
1	Low-voltage detection reset	Without low-voltage detection reset	With low-voltage detection reset
2	Reset	With dedicated reset input	Without dedicated reset input

MB95560H/570H/580H Series

ORDERING INFORMATION

Part number	Package
MB95F562HWQN-G-SNE1 MB95F562HWQN-G-SNERE1 MB95F562KWQN-G-SNE1 MB95F562KWQN-G-SNERE1 MB95F563HWQN-G-SNE1 MB95F563HWQN-G-SNERE1 MB95F563KWQN-G-SNE1 MB95F563KWQN-G-SNERE1 MB95F564HWQN-G-SNE1 MB95F564HWQN-G-SNERE1 MB95F564KWQN-G-SNE1 MB95F564KWQN-G-SNERE1	32-pin plastic QFN (LCC-32P-M19)
MB95F562HPF-G-SNE2 MB95F562KPF-G-SNE2 MB95F563HPF-G-SNE2 MB95F563KPF-G-SNE2 MB95F564HPF-G-SNE2 MB95F564KPF-G-SNE2	20-pin plastic SOP (FPT-20P-M09)
MB95F562HPFT-G-SNE2 MB95F562KPFT-G-SNE2 MB95F563HPFT-G-SNE2 MB95F563KPFT-G-SNE2 MB95F564HPFT-G-SNE2 MB95F564KPFT-G-SNE2	20-pin plastic TSSOP (FPT-20P-M10)
MB95F582HWQN-G-SNE1 MB95F582HWQN-G-SNERE1 MB95F582KWQN-G-SNE1 MB95F582KWQN-G-SNERE1 MB95F583HWQN-G-SNE1 MB95F583HWQN-G-SNERE1 MB95F583KWQN-G-SNE1 MB95F583KWQN-G-SNERE1 MB95F584HWQN-G-SNE1 MB95F584HWQN-G-SNERE1 MB95F584KWQN-G-SNE1 MB95F584KWQN-G-SNERE1	32-pin plastic QFN (LCC-32P-M19)
MB95F582HPFT-G-SNE2 MB95F582KPFT-G-SNE2 MB95F583HPFT-G-SNE2 MB95F583KPFT-G-SNE2 MB95F584HPFT-G-SNE2 MB95F584KPFT-G-SNE2	16-pin plastic TSSOP (FPT-16P-M08)
MB95F582HPF-G-SNE2 MB95F582KPF-G-SNE2 MB95F583HPF-G-SNE2 MB95F583KPF-G-SNE2 MB95F584HPF-G-SNE2 MB95F584KPF-G-SNE2	16-pin plastic SOP (FPT-16P-M23)

(Continued)

MB95560H/570H/580H Series

(Continued)

Part number	Package
MB95F572HPH-G-SNE2	
MB95F572KPH-G-SNE2	8-pin plastic DIP
MB95F573HPH-G-SNE2	(DIP-8P-M03)
MB95F573KPH-G-SNE2	
MB95F574HPH-G-SNE2	
MB95F574KPH-G-SNE2	
MB95F572HPF-G-SNE2	8-pin plastic SOP
MB95F572KPF-G-SNE2	(FPT-8P-M08)
MB95F573HPF-G-SNE2	
MB95F573KPF-G-SNE2	
MB95F574HPF-G-SNE2	

MB95560H/570H/580H Series

■ PACKAGE DIMENSION

32-pin plastic QFN	Lead pitch	0.50 mm
	Package width \times package length	$5.00 \mathrm{~mm} \times 5.00 \mathrm{~mm}$
Sealing method	Plastic mold	
	Mounting height	0.80 mm MAX
	Weight	0.06 g

Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
(Continued)

MB95560H/570H/580H Series

20-pin plastic SOP	Lead pitch	1.27 mm
Package width \times package length	$7.50 \mathrm{~mm} \times 12.70 \mathrm{~mm}$	
	Lead shape	Gullwing
(FPT-20P-M09)	Nead bend	
direction	Normal bend	

Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
(Continued)

MB95560H/570H/580H Series

20-pin plastic TSSOP	Lead pitch	0.65 mm
Package width \times package length	$4.40 \mathrm{~mm} \times 6.50 \mathrm{~mm}$	
	Lead shape	Gullwing
(FPT-20P-M10)	Moaling method	Plastic mold

Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
(Continued)

MB95560H/570H/580H Series

16-pin plastic TSSOP	Lead pitch	0.65 mm
Package width \times package length	$4.40 \mathrm{~mm} \times 4.96 \mathrm{~mm}$	
	Lead shape	Gullwing
(FPT-16P-M08)		

Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
(Continued)

MB95560H/570H/580H Series

16-pin plastic SOP	Lead pitch	1.27 mm
Package width \times package length	$3.90 \mathrm{~mm} \times 9.96 \mathrm{~mm}$	
	Lead shape	Gullwing
Sealing method	Plastic mold	
Mounting height	1.75 mm MAX	

Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
(Continued)

MB95560H/570H/580H Series

8-pin plastic DIP	Lead pitch	2.54 mm
	Sealing method	Plastic mold
(DIP-8P-M03)		

Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
(Continued)

MB95560H/570H/580H Series

(Continued)

8-pin plastic SOP	Lead pitch	1.27 mm
Package width \times package length	$5.30 \mathrm{~mm} \times 5.24 \mathrm{~mm}$	
	Lead shape direction	Gullwing
Sealing method	Normal bend	
Mounting height	2.10 mm Max	

Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/

MB95560H/570H/580H Series

■ MAJOR CHANGES IN THIS EDITION

A change on a page is indicated by a vertical line drawn on the left side of that page.

Page	Section	Details
-	-	Changed the series name. MB95560H Series \rightarrow MB95560H/570H/580H Series
		Added information on the MB95570H Series.
		Added information on the MB95580H Series.
27	■ PIN CONNECTION - DBG pin	Revised details of "• DBG pin".
	- $\overline{\text { RST }}$ pin	Revised details of "• $\overline{\text { RST }}$ pin".
28	- C pin	Corrected the following statement. The decoupling capacitor for the Vcc pin must have a capacitance larger than Cs. \rightarrow The decoupling capacitor for the V cc pin must have a capacitance equal to or larger than the capacitance of Cs.
39	- I/O MAP (MB95570H Series)	Corrected the R/W attribute of the CMDR register. R/W \rightarrow R
		Corrected the R/W attribute of the WDTH register. $R / W \rightarrow R$
		Corrected the R/W attribute of the WDTL register. $R / W \rightarrow R$
42	- I/O MAP (MB95580H Series)	Corrected the R/W attribute of the CMDR register. $R / W \rightarrow R$
		Corrected the R/W attribute of the WDTH register. $\mathrm{R} / \mathrm{W} \rightarrow \mathrm{R}$
		Corrected the R/W attribute of the WDTL register. $\mathrm{R} / \mathrm{W} \rightarrow \mathrm{R}$
46	- ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings	Corrected the rating of the parameter ""L" level total maximum output current". $48 \rightarrow 100$
		Corrected the rating of the parameter "" H " level total maximum output current". $48 \rightarrow-100$
48	2. Recommended Operating Conditions	Revised note *2. The value is 2.88 V when the low-voltage detection reset is used. \rightarrow The minimum power supply voltage becomes 2.18 V when a product with the low-voltage detection reset is used.
		Corrected the following statement in note *3. The decoupling capacitor for the Vcc pin must have a capacitance larger than Cs. \rightarrow The decoupling capacitor for the V_{cc} pin must have a capacitance equal to or larger than the capacitance of Cs .
		Revised the remark in "• DBG/RST/C pins connection diagram".

(Continued)

MB95560H/570H/580H Series

(Continued)

Page	Section	Details
49	3. DC Characteristics	Revised the remark of the parameter "Input leak current (Hi-Z output leak current)". When pull-up resistance is disabled \rightarrow When the internal pull-up resistor is disabled
		Renamed the parameter "Pull-up resistance" to "Internal pull-up resistor".
		Revised the remark of the parameter "Internal pull-up resistor". When pull-up resistance is enabled \rightarrow When the internal pull-up resistor is enabled
53	4. AC Characteristics (1) Clock Timing	Corrected the pin names of the parameter "Input clock rising time and falling time". $\begin{aligned} & \mathrm{X0} \rightarrow \mathrm{X} 0, \mathrm{X0A} \\ & \mathrm{X} 0, \mathrm{X} 1 \rightarrow \mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A}, \mathrm{X} 1 \mathrm{~A} \end{aligned}$

MB95560H/570H/580H Series

- Major changes from third edition to fourth edition

Page	Section	Details
23 to 26	- HANDLING PRECAUTIONS	New section
35	- I/O MAP (MB95560H Series)	Corrected the R/W attribute of the CMDR register. $R / W \rightarrow R$
52	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (1) Clock Timing	Corrected the operating conditions of $\mathrm{F}_{\text {CRH }}$ of the parameter "Clock frequency". $\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & +70^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & \overrightarrow{+70^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}} \end{aligned}$ Corrected the operating conditions of Fmcrple of the parameter "Clock frequency". $\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & \overrightarrow{0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}} \\ & +70^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & \overrightarrow{+} 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$
68	5. A/D Converter (1) A / D Converter Electrical Characteristics	Corrected the symbol of the parameter "Zero transition voltage". $\mathrm{V}_{\text {от }} \rightarrow \mathrm{V}_{\text {от }}$
69	5. A/D Converter (2) Notes on Using A/D Converter - Analog input equivalent circuit	Corrected the range of V_{cc}. $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} c c<5.5 \mathrm{~V} \\ & \overrightarrow{2.7} \mathrm{~V} \leq \mathrm{V} c \mathrm{c}<4.5 \mathrm{~V} \end{aligned}$
		Corrected the values of R . $\begin{aligned} & 3.3 \mathrm{k} \Omega \rightarrow 1.45 \mathrm{k} \Omega \\ & 5.7 \mathrm{k} \Omega \rightarrow 2.7 \mathrm{k} \Omega \end{aligned}$
70, 71	5. A/D Converter (3) Definitions of A/D Converter Terms	Corrected the symbol of the zero transition voltage. $\mathrm{V}_{\text {оt }} \rightarrow \mathrm{V}_{\text {от }}$

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome,
Kohoku-ku Yokohama Kanagawa 222-0033, Japan
Tel: +81-45-415-5858
http://jp.fujitsu.com/fsl/en/
For further information please contact:

North and South America
FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD.
902 Kosmo Tower Building, 1002 Daechi-Dong,
Gangnam-Gu, Seoul 135-280, Republic of Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://www.fujitsu.com/kr/fsk/

Asia Pacific
FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan,
\#05-08 New Tech Park 556741 Singapore
Tel : +65-6281-0770 Fax : +65-6281-0220
http://sg.fujitsu.com/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. 30F, Kerry Parkside, 1155 Fang Dian Road, Pudong District, Shanghai 201204, China
Tel : +86-21-6146-3688 Fax : +86-21-6146-3660
http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD.
2/F, Green 18 Building, Hong Kong Science Park,
Shatin, N.T., Hong Kong
Tel : +852-2736-3232 Fax : +852-2314-4207
http://cn.fujitsu.com/fsp/

All Rights Reserved.

FUJITSU SEMICONDUCTOR LIMITED, its subsidiaries and affiliates (collectively, "FUJITSU SEMICONDUCTOR") reserves the right to make changes to the information contained in this document without notice. Please contact your FUJITSU SEMICONDUCTOR sales representatives before order of FUJITSU SEMICONDUCTOR device.
Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of FUJITSU SEMICONDUCTOR device. FUJITSU SEMICONDUCTOR disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, accuracy, performance, proper operation of the device or non-infringement. If you develop equipment or product incorporating the FUJITSU SEMICONDUCTOR device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any damages whatsoever arising out of or in connection with such information or any use thereof.
Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of FUJITSU SEMICONDUCTOR or any third party by license or otherwise, express or implied.
FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use thereof.
The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). FUJITSU SEMICONDUCTOR shall not be liable for you and/or any third party for any claims or damages arising out of or in connection with above-mentioned uses of the products.
Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.
The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein. All company names, brand names and trademarks herein are property of their respective owners.

[^0]: *: For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

